This work implements an Electroencephalogram (EEG) signal classifier. The implemented method uses Orthogonal Polynomials (OP) to convert the EEG signal samples to moments. A Sparse Filter (SF) reduces the number of converted moments to increase the classification accuracy. A Support Vector Machine (SVM) is used to classify the reduced moments between two classes. The proposed method’s performance is tested and compared with two methods by using two datasets. The datasets are divided into 80% for training and 20% for testing, with 5 -fold used for cross-validation. The results show that this method overcomes the accuracy of other methods. The proposed method’s best accuracy is 95.6% and 99.5%, respectively. Finally, from the results, it is obvious that the number of moments selected by the SP should exceed 30% of the overall EEG samples for accuracy to be over 90%.
Medicine is one of the fields where the advancement of computer science is making significant progress. Some diseases require an immediate diagnosis in order to improve patient outcomes. The usage of computers in medicine improves precision and accelerates data processing and diagnosis. In order to categorize biological images, hybrid machine learning, a combination of various deep learning approaches, was utilized, and a meta-heuristic algorithm was provided in this research. In addition, two different medical datasets were introduced, one covering the magnetic resonance imaging (MRI) of brain tumors and the other dealing with chest X-rays (CXRs) of COVID-19. These datasets were introduced to the combination network that contained deep lea
... Show MoreThis study investigates the impact of spatial resolution enhancement on supervised classification accuracy using Landsat 9 satellite imagery, achieved through pan-sharpening techniques leveraging Sentinel-2 data. Various methods were employed to synthesize a panchromatic (PAN) band from Sentinel-2 data, including dimension reduction algorithms and weighted averages based on correlation coefficients and standard deviation. Three pan-sharpening algorithms (Gram-Schmidt, Principal Components Analysis, Nearest Neighbour Diffusion) were employed, and their efficacy was assessed using seven fidelity criteria. Classification tasks were performed utilizing Support Vector Machine and Maximum Likelihood algorithms. Results reveal that specifi
... Show MoreBiosignal analysis is one of the most important topics that researchers have tried to develop during the last century to understand numerous human diseases. Electroencephalograms (EEGs) are one of the techniques which provides an electrical representation of biosignals that reflect changes in the activity of the human brain. Monitoring the levels of anesthesia is a very important subject, which has been proposed to avoid both patient awareness caused by inadequate dosage of anesthetic drugs and excessive use of anesthesia during surgery. This article reviews the bases of these techniques and their development within the last decades and provides a synopsis of the relevant methodologies and algorithms that are used to analyze EEG sig
... Show MoreElectrocardiogram (ECG) is an important physiological signal for cardiac disease diagnosis. With the increasing use of modern electrocardiogram monitoring devices that generate vast amount of data requiring huge storage capacity. In order to decrease storage costs or make ECG signals suitable and ready for transmission through common communication channels, the ECG data
volume must be reduced. So an effective data compression method is required. This paper presents an efficient technique for the compression of ECG signals. In this technique, different transforms have been used to compress the ECG signals. At first, a 1-D ECG data was segmented and aligned to a 2-D data array, then 2-D mixed transform was implemented to compress the
The Gaussian orthogonal ensemble (GOE) version of the random matrix theory (RMT) has been used to study the level density following up the proton interaction with 44Ca, 48Ti and 56Fe.
A promising analysis method has been implemented based on the available data of the resonance spacing, where widths are associated with Porter Thomas distribution. The calculated level density for the compound nuclei 45Sc,49Vand 57Co shows a parity and spin dependence, where for Sc a discrepancy in level density distinguished from this analysis probably due to the spin misassignment .The present results show an acceptable agreement with the combinatorial method of level density.
... Show MoreSoil suction is one of the most important parameters describing the moisture condition of unsaturated soils. The measurement of soil suction is crucial for applying the theories of the engineering behavior of unsaturated soils.
The filter paper method is one of the soil suction measurement techniques In this paper, five soil samples were collected from five sites within Baghdad city – al-Rasafa region. These soils have different properties and they were prepared at different degrees of saturation. For each sample, the total and matric suction were measured by the filter paper method at different degrees of saturation. Then correlations were made between the soil properties and the total and matric suction. It was concluded that the
In a connected graph , the distance function between each pair of two vertices from a set vertex is the shortest distance between them and the vertex degree denoted by is the number of edges which are incident to the vertex The Schultz and modified Schultz polynomials of are have defined as:
respectively, where the summations are taken over all unordered pairs of distinct vertices in and is the distance between and in The general forms of Schultz and modified Schultz polynomials shall be found and indices of the edge – identification chain and ring – square graphs in the present work.
Care and attention to the structure in the sixties of the last century replaced the mark, and if the structure of Ms. pampered in research and studies, it has become the mark is also a spoiled lady .. But the relationship between the structure and the mark was not a break and break, but the relationship of integration, His themes are structural analysis, and these are intellectual themes that can not be surpassed in contemporary research, especially since semiotics have emerged from the linguistic inflection.
We have tried to distinguish between text and speech, which is a daunting task, as it seems that whenever the difference between them is clear and clear, we come back to wonder whether the text is the same discourse, and is
... Show MoreIn this study, a new technique is considered for solving linear fractional Volterra-Fredholm integro-differential equations (LFVFIDE's) with fractional derivative qualified in the Caputo sense. The method is established in three types of Lagrange polynomials (LP’s), Original Lagrange polynomial (OLP), Barycentric Lagrange polynomial (BLP), and Modified Lagrange polynomial (MLP). General Algorithm is suggested and examples are included to get the best effectiveness, and implementation of these types. Also, as special case fractional differential equation is taken to evaluate the validity of the proposed method. Finally, a comparison between the proposed method and other methods are taken to present the effectiveness of the proposal meth
... Show MoreBased on analyzing the properties of Bernstein polynomials, the extended orthonormal Bernstein polynomials, defined on the interval [0, 1] for n=7 is achieved. Another method for computing operational matrices of derivative and integration D_b and R_(n+1)^B respectively is presented. Also the result of the proposed method is compared with true answers to show the convergence and advantages of the new method.