This work implements an Electroencephalogram (EEG) signal classifier. The implemented method uses Orthogonal Polynomials (OP) to convert the EEG signal samples to moments. A Sparse Filter (SF) reduces the number of converted moments to increase the classification accuracy. A Support Vector Machine (SVM) is used to classify the reduced moments between two classes. The proposed method’s performance is tested and compared with two methods by using two datasets. The datasets are divided into 80% for training and 20% for testing, with 5 -fold used for cross-validation. The results show that this method overcomes the accuracy of other methods. The proposed method’s best accuracy is 95.6% and 99.5%, respectively. Finally, from the results, it is obvious that the number of moments selected by the SP should exceed 30% of the overall EEG samples for accuracy to be over 90%.
We introduce some new generalizations of some definitions which are, supra closure converge to a point, supra closure directed toward a set, almost supra converges to a set, almost supra cluster point, a set supra H-closed relative, supra closure continuous functions, supra weakly continuous functions, supra compact functions, supra rigid a set, almost supra closed functions and supra perfect functions. And we state and prove several results concerning it
The plethora of the emerged radio frequency applications makes the frequency spectrum crowded by many applications and hence the ability to detect specific application’s frequency without distortion is a difficult task to achieve.
The goal is to achieve a method to mitigate the highest interferer power in the frequency spectrum in order to eliminate the distortion.
This paper presents the application of the proposed tunable 6th-order notch filter on Ultra-Wideband (UWB) Complementary Metal-Oxide-Semiconductor (CMOS) Low Noise
Abstract. In this work, some new concepts were introduced and the relationship between them was studied. These concepts are filter directed-toward, nano-closure-directed-toward and nano-closure-converge to point, and some theories and results about these concepts were presented. A definition almost-nano-converges for set, almost-nano-cluster-point, and definition of quasi-nano-Hausdorff-closed and was also called nano-Hausdorff-closed relative, were also presented several theories related to these definitions were presented and the relationship between them was studied . We also provided other generalizations, including nano closure continuous mappings and it was also called as nano-weaklycontinuous- mappings, as well as providing a definit
... Show MoreResearchers used different methods such as image processing and machine learning techniques in addition to medical instruments such as Placido disc, Keratoscopy, Pentacam;to help diagnosing variety of diseases that affect the eye. Our paper aims to detect one of these diseases that affect the cornea, which is Keratoconus. This is done by using image processing techniques and pattern classification methods. Pentacam is the device that is used to detect the cornea’s health; it provides four maps that can distinguish the changes on the surface of the cornea which can be used for Keratoconus detection. In this study, sixteen features were extracted from the four refractive maps along with five readings from the Pentacam software. The
... Show MoreThis research includes theoretical and evaluation design of a polarizer filter of high transmission in the near IR region of (900-1200nm) for different incidence angles to obtain a long wave and short wave pass filter using analytical calculations. Results refer to a new configuration design in fewer layers than used in previous studies in the long wave pass at incidence angles (45o,50o,55o). Adopted Hafnium dioxide (HfO2) and Magnesium fluoride (MgF2) as coating material at design wavelength (933nm), the study also included design short wave pass polarizer by using the same coating material.
Voice Activity Detection (VAD) is considered as an important pre-processing step in speech processing systems such as speech enhancement, speech recognition, gender and age identification. VAD helps in reducing the time required to process speech data and to improve final system accuracy by focusing the work on the voiced part of the speech. An automatic technique for VAD using Fuzzy-Neuro technique (FN-AVAD) is presented in this paper. The aim of this work is to alleviate the problem of choosing the best threshold value in traditional VAD methods and achieves automaticity by combining fuzzy clustering and machine learning techniques. Four features are extracted from each speech segment, which are short term energy, zero-crossing rate, auto
... Show MoreDiscrete Krawtchouk polynomials are widely utilized in different fields for their remarkable characteristics, specifically, the localization property. Discrete orthogonal moments are utilized as a feature descriptor for images and video frames in computer vision applications. In this paper, we present a new method for computing discrete Krawtchouk polynomial coefficients swiftly and efficiently. The presented method proposes a new initial value that does not tend to be zero as the polynomial size increases. In addition, a combination of the existing recurrence relations is presented which are in the n- and x-directions. The utilized recurrence relations are developed to reduce the computational cost. The proposed method computes app
... Show MoreEarly detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze med
... Show More