Charge transfer complex formation method has been applied for the spectrophotometric determination of erythromycin ethylsuccinate, in bulk sample and dosage form. The method was accurate, simple, rapid, inexpensive and sensitive depending on the formed charge- transfer complex between cited drug and, 2,3- Dichloro-5,6-dicyano-p- benzoquinone (DDQ) as a chromogenic reagent. The formed complex shows absorbance maxima at 587 nm against reagent blank. The calibration graph is linear in the ranges of (10 - 110) μg.mL-1 with detection limit of 0.351μg.mL-1. The results show the absence of interferences from the excipients on the determination of the drug. Therefore the proposed method has been successfully applied for the determination of erythromycin ethylsuccinate in pharmaceutical preparations.
A procedure for the mutual derivatization and determination of thymol and Dapsone was developed and validated in this study. Dapsone was used as the derivatizing agent for the determination of thymol, and thymol was used as the derivatizing agent for the determination of Dapsone. An optimization study was performed for the derivatization reaction; i.e., the diazonium coupling reaction. Linear regression calibration plots for thymol and Dapsone in the direct reaction were constructed at 460 nm, within the concentration range of 0.3-7 μg ml-1 for thymol and 0.3-4 μg ml-1 for Dapsone, with limits of detection 0.086 and 0.053 μg ml-1, respectively. Corresponding plots for the cloud point extraction of thymol and Dapsone were constructed
... Show MoreCommunity detection is an important and interesting topic for better understanding and analyzing complex network structures. Detecting hidden partitions in complex networks is proven to be an NP-hard problem that may not be accurately resolved using traditional methods. So it is solved using evolutionary computation methods and modeled in the literature as an optimization problem. In recent years, many researchers have directed their research efforts toward addressing the problem of community structure detection by developing different algorithms and making use of single-objective optimization methods. In this study, we have continued that research line by improving the Particle Swarm Optimization (PSO) algorithm using a
... Show MoreA simple indirect spectrophotometric method for determination of mebendazol in pure and pharmaceutical formulation was presented in this study. UV-Visible spectrophotometry using the optimal conditions was developed for determination of mebendazole in pure drug and different preparation samples. The method is based on the oxidation of drug by nbromosuccinimide with hydrochloric acid and the left amount of oxidizing agent was determined by the reaction with tartarazine and the absorbance was measured at 428 nm. Calibration curves were linear in the range of 5 to 30 µg.mL-1 with molar absorptivity 8437.2 L.mol-1 .cm-1 . The limits of detection and quantification were determined and found to be 0.7770 µg.mL-1 and 2.3400 µg.mL-1 respec
... Show MoreSemiconductor-based photocatalytic processes are widely applied as ecofriendly technology for degrading organic pollutants. Establishing photocatalytic heterojunctions with Z-type photocarriers transfer pathways is projected to be a superb strategy to enhance photocatalytic behavior. In this paper, novel and stable (0D/2D) heterojunctions of CoS-embedded boron-doped g-C3N4 (CoS/BCN) with a high rate of charges transfer/separation were assembled for degradation of malachite green dye (MG). The CoS/BCN photocatalyst achieves a photodegradation efficiency of 96.9 % within 1 h of LED illumination, which is 2.5 and 1.4-fold enhancement compared with bare g-C3N4 and BCN, respectively. Besides, the results of species-trapping trials exhibited that
... Show MoreA method is developed for the determination of iron (III) in pharmaceutical preparations by coupling cloud point extraction (CPE) and UV-Vis spectrophotometry. The method is based on the reaction of Fe(III) with excess drug ciprofloxacin (CIPRO) in dilute H2SO4, forming a hydrophobic Fe(III)- CIPRO complex which can be extracted into a non-ionic surfactant Triton X-114, and iron ions are determined spectrophotometrically at absorption maximum of 437 nm. Several variables which impact on the extraction and determination of Fe (III) are optimized in order to maximize the extraction efficiency and improve the sensitivity of the method. The interferences study is also considered to check the accuracy of the procedure. The results hav
... Show MoreThe present work involved a study the effect of cobalt(II) complex with formula [CoL(H2O)NO3] .4ETOH where L=Nitro [5-(P-nitro phenyl) -4-phenyl-1,2,4 traizole-3-dithiocarbamato hydrazide] aqua. (4) Ethanol and anti-cancer drug - cyclophosphamide on specific activity of two liver enzymes (GPT,ALP) by utilizing an in vivo system in female mice. On the enzymatic level an inhibition in the activity of GPT was noticed in different body organs such as liver, kidney and lung. The inhibition was noticed in both test and cyclophosphamide drug (cp). Mice were treated with three doses of cyclophosphamide (90,180, 250) ?g/ mouse for three days. The same doses were used for the cobalt (II) complex. The liver shows the highest rate of(GPT) inhibition co
... Show MoreMulti-drug-resistant uropathogenic Escherichia coli (UPEC) is considered a significant challenge due to its ability to resist antibiotics and form biofilms. UPEC biofilm formers are well protected and largely inaccessible to antibiotics, which leads to persistent infections and evasion of the host immune system. Understanding how ciprofloxacin and trimethoprim/sulfamethoxazole affect biofilm formation is essential for improving treatment strategies for urinary tract infections (UTIs). A total of 76 UPEC isolates were obtained from Iraqi patients and identified using morphological and biochemical characteristics, as well as the Vitek®-2 Compact system. Minimum inhibitory concentrations (MICs) were determined using the Vitek®-2 system, whic
... Show MoreThe optimization of artificial gas lift techniques plays a crucial role in the advancement of oil field development. This study focuses on investigating the impact of gas lift design and optimization on production outcomes within the Mishrif formation of the Halfaya oil field. A comprehensive production network nodal analysis model was formulated using a PIPESIM Optimizer-based Genetic Algorithm and meticulously calibrated utilizing field-collected data from a network comprising seven wells. This well group encompasses three directional wells currently employing gas lift and four naturally producing vertical wells. To augment productivity and optimize network performance, a novel gas lift design strategy was proposed. The optimization of
... Show More