The electrocardiogram (ECG) is the recording of the electrical potential of the heart versus time. The analysis of ECG signals has been widely used in cardiac pathology to detect heart disease. The ECGs are non-stationary signals which are often contaminated by different types of noises from different sources. In this study, simulated noise models were proposed for the power-line interference (PLI), electromyogram (EMG) noise, base line wander (BW), white Gaussian noise (WGN) and composite noise. For suppressing noises and extracting the efficient morphology of an ECG signal, various processing techniques have been recently proposed. In this paper, wavelet transform (WT) is performed for noisy ECG signals. The graphical user interface (GUI) system is developed for visual representation and adaptive enhancement on noise modeling in ECG-based signal processing. Percentage root mean square difference (PRD) was measured between the modeled noisy signals and the samples of the original ECG. Moreover, cross correlation (XCorr) and root mean square error (RMSE) were performed between the noisy ECG signals and the denoised ones which resulted from WT denoising technique initially to evaluate the effectiveness of the WT denoising technique. The results show that the WT was successfully removed different types of proposed models of noises. The PRD was reasonable and are within the acceptable range, which is less than 50%, with 17% for BW and 47% for PLI indicating that the models and methods used for prediction are ideal for high precision signal applications. This study will help medical doctors, clinicians, physicians, and technicians to eliminate different types of noise.
Walter Lippmann, speaking about man, says : ” Gradually he makes for himself a trustworthy picture inside his head of the world beyond his reach. “. This means that the picture, whether it was good or bad, it doesn’t happen for nothing, but rather for intentional purposes. Some orientalists make their judgements even before getting to the place concerned with the study.
The mental image is one of the most misused terminology, although the world today has become the world of image, it witnessed the disappearance of the theories that used to consider the media as a reflective mirror for society, also it was confirmed that the media creates what varies from reality and sometimes completely different from reality. The image of
... Show MoreThe current research was aimed at the following:
1. Measurement of Personality Type Observer of the University students.
2. Identify the differences in Personality Type Observer among the University students according to variable of Sex (male / female). And according to variable of Specialization (scientific / literary)
3. Measurement of Withdrawal of the University students.
4. Identify the differences in Withdrawal among the University students according to variable of Sex (male / female). And according to variable of Specialization (scientific / literary).
5. Identify the relationship between Personality Type Observer and Withdrawal.
To achieve this aims of the research, the researchers set up the instrument is scale
BACKGROUND: Preeclampsia (PE) is a possible etiology of obstetrical and neonatal complications which are increased in resource-limited settings and developing countries. AIM: We aimed to find out the prevalence of PE in Iraqi ladies and specific outcomes, including gestational weight gain (GWG), cesarean section (CS), preterm delivery (PD), and low birth weight (LBW). METHODS: All singleton pregnant women visiting our tertiary center for delivery were involved over 3 years. PE women were compared with non-PE ladies. Complete history and examination were done during pregnancy and after delivery by the attending obstetrician and neonatologist with full documentation in medical records. RESULTS: PE prevalence was 4.79
... Show MoreThe proliferation of many editing programs based on artificial intelligence techniques has contributed to the emergence of deepfake technology. Deepfakes are committed to fabricating and falsifying facts by making a person do actions or say words that he never did or said. So that developing an algorithm for deepfakes detection is very important to discriminate real from fake media. Convolutional neural networks (CNNs) are among the most complex classifiers, but choosing the nature of the data fed to these networks is extremely important. For this reason, we capture fine texture details of input data frames using 16 Gabor filters indifferent directions and then feed them to a binary CNN classifier instead of using the red-green-blue
... Show MoreThis research addresses the employment of public relations for foreign oil corporate social responsibility programs operating in Iraq. It is a study of the programmes of six petroleum companies operating in Basra Governorate, which were selected for research as the highest production of Iraqi oil, as well as its enjoyment of strategic oil stores in Iraq.It contains the largest oil fields operatedby major international companies. This study aims at a number of objectives, notably the following:1)Recognize the most prominent corporate social responsibility projects and initiatives the companies have introduced to the local public.2)Investigate the extent to which the Iraqi publ
... Show MoreThis is a contextual study in face and isotope science, and I have made it in one of the terms faces and isotopes, which is the word (bad). Quranic also, and that is at every aspect they mentioned.
The nature of the research required that it be divided into three sections:
The first topic: I singled it out to show the types of contextual connotations.
- The second topic: I singled it out to define the word bad and its meaning.
- The third topic: I devoted it to the study of the word bad and explaining the significance of the Quranic context on the additional meaning and the original meaning.
Conclusion: It mentioned the most important results, which are:
1- The significance of the Quranic context is one of the most impo