Many faces are exposed to degradation, discoloration, changes in humidity. The primary objective has improved some properties of hybrid nanocomposites materials that used for restoring of the function maxillofacial prosthesis and improving the esthetic. In the present research different lengths chopped and continuous of ultrahigh molecular weight polyethylene (UHMWPE) fiber was added at selected percentage (0.0, 0.2% and 1%) to polymer blend composite (95%SR /5%PMMA: 0.2% Pomegranate Peels Powder (PPP)) for developing the properties of silicone rubber used for the maxillofacial prosthesis applications. Some mechanical and physical properties were done on the all prepared samples. The results showed that all properties have improved when added 0.5% ratio of continuous UHMWPE fiber to polymer blend nanocomposite (95%SR /5%PMMA: 0.2% Pomegranate Peels Powder (PPP)) sample and this represents the optimal ratios of components of hybrid composite sample. Therefore, this blend may be a candidate for achieving the properties required for the applications of maxillofacial prosthetics
In this study, the investigation of Local natural Iraqi rocks kaolin with the addition of different proportions of bauxite and its effect on the physical and mechanical properties of the produced refractories was conducted. Kaolin/bauxite mixture was milled and classified into various size fractions, the kaolin (less than 105 μm) and the bauxite (less than 70μm). The specimens were mixed from kaolin and bauxite in ranges B1 (95+5)%, B2 (90+10)%, B3(85+15)%, and B4 (80+20)% respectively. The green specimens were shaped by the semi-dry method using a hydraulic press and a molding pressure of 7 MPa with the addition of (9-12) %wt. of PVA ratio. After molding and drying, the specimens were fired at (1100, 1200 and 13
... Show MoreGreen synthesis methods have emerged as favorable techniques for the synthesis of nano-oxides due to their simplicity, cost-effectiveness, eco-friendliness, and non-toxicity. In this study, Nickel oxide nanoparticles (NiO-NPs) were synthesized using the aqueous extract of Laurus nobilis leaves as a natural capping agent. The synthesized NiO-NPs were employed as an adsorbent for the removal of Biebrich Scarlet (BS) dye from aqueous solution using adsorption technique. Comprehensive characterization of NiO-NPs was performed using various techniques such as atomic force microscopy (AFM), Fourier transform infrared (FTIR), X-ray diffraction (XRD), Brunauer-Emmett and Teller (BET) analysis, and scanning electron microscopy (SEM). Additionally, o
... Show MoreLiquid – liquid interface reaction is one of the method to prepare nanoparticles, the preparation of nanoparticles depends on the super saturation of ions which can satisfy by layered two immiscible liquid (toluene and deionized (DI) water). The XRD-diffraction analysis give a mix structure from hexagonal and cubic and the average grain size is 7.73 nm using Sherrer relation and 9.54 nm using Williamson –Hall method. Transmission electron microscopy (TEM) Showed that the size of particles around 3 nm which is comparable with Bohr radius of CdS.
From UV-Visible spectrum analysis which use two model to estimate the radius of particles , the first one is effective mass approximate (EMA) model and the second one is tight binding model
Sorption is a key factor in removal of organic and inorganic contaminants from their aqueous solutions. In this study, we investigated the removal of Xylenol Orange tetrasodium salt (XOTS) from its aqueous solution by Bauxite (BXT) and cationic surfactant hexadecyltrimethyl ammonium bromide modified Bauxite (BXT-HDTMA) in batch experiments. The BXT and BXT-HDTMA were characterized using FTIR, and SEM techniques. Adsorption studies were performed at various parameters i.e. temperature, contact time, adsorbent weight, and pH. The modified BXT showed better maximum removal efficiency (98.6% at pH = 9.03) compared to natural Bauxite (75% at pH 2.27), suggesting that BXT-HDTMA is an excellent adsorbent for the removal of XOTS from water. The equ
... Show MoreMicrowave heating is caused by the ability of the materials to absorb microwave energy and convert it to heat. The aim of this study is to know the difference that will occur when heat treating the high strength aluminum alloys AA7075-T73 in a microwave furnace within different mediums (dry and acidic solution) at different times (30 and 60) minutes, on mechanical properties and fatigue life. The experimental results of microwave furnace heat energy showed that there were variations in the mechanical properties (ultimate stress, yielding stress, fatigue strength, fatigue life and hardness) with the variation in mediums and duration times when compared with samples without treatment. The ultimate stress, yielding stress and fatigue streng
... Show MoreThis study focuses on producing wood-plastic composites using unsaturated polyester resin reinforced with Pistacia vera shell particles and wood industry waste powder. Composites with reinforcement ratios of 0%, 20%, 30%, and 40% were prepared and tested for thermal conductivity, impact strength, hardness, and compressive strength. The results revealed that thermal conductivity increases with reinforcement, while maintaining good thermal insulation, reaching a peak value of 0.633453 W/m·K. Hardness decreased with increased reinforcement, reaching a minimum nominal hardness value of 0.9479. Meanwhile, impact strength and compressive strength improved, with peak values of 14.103 k/m² and 57.3864568 MPa, respectively. The main aim is to manu
... Show MoreAbstract The present work aims to study the performance of reinforced compacted clay soil by sand columns stabilized with sodium silicate to obtain more solid columns than the surrounding soil. The experimental work was carried out by using a lab model to evaluate the performance of both the floating and end bearing sand columns. The results showed that the improvement ratio for the soil reinforced with sand columns stabilized with sodium silicate reached 390% for the type of floating columns and 438% for end bearing columns.