Classical cryptography systems exhibit major vulnerabilities because of the rapid development of quan tum computing algorithms and devices. These vulnerabilities were mitigated utilizing quantum key distribution (QKD), which is based on a quantum no-cloning algorithm that assures the safe generation and transmission of the encryption keys. A quantum computing platform, named Qiskit, was utilized by many recent researchers to analyze the security of several QKD protocols, such as BB84 and B92. In this paper, we demonstrate the simulation and implementation of a modified multistage QKD protocol by Qiskit. The simulation and implementation studies were based on the “local_qasm” simulator and the “FakeVigo” backend, respectively. The suggested multistage QKD applies different random commutative sets of Euler’s angles to the transmitted qubits. If Eve successfully hacked the Euler’s angles of a transmitted qubit, Bob will predict the hacking event because other bits apply different Euler’s angles. The commutative sets of Euler’s angles should be selected by a prior agreement between Alice and Bob. Our approach provides additional security proof for the multistage QKD protocol enabling safe public sharing of a sifted key between the sender and receiver
A load-shedding controller suitable for small to medium size loads is designed and implemented based on preprogrammed priorities and power consumption for individual loads. The main controller decides if a particular load can be switched ON or not according to the amount of available power generation, load consumption and loads priorities. When themaximum allowed power consumption is reached and the user want to deliver power to additional load, the controller will decide if this particular load should be denied receiving power if its priority is low. Otherwise, it can be granted to receive power if its priority is high and in this case lower priority loads are automatically switched OFF in order not to overload the power generation. The
... Show MoreIn this paper, integrated quantum neural network (QNN), which is a class of feedforward
neural networks (FFNN’s), is performed through emerging quantum computing (QC) with artificial neural network(ANN) classifier. It is used in data classification technique, and here iris flower data is used as a classification signals. For this purpose independent component analysis (ICA) is used as a feature extraction technique after normalization of these signals, the architecture of (QNN’s) has inherently built in fuzzy, hidden units of these networks (QNN’s) to develop quantized representations of sample information provided by the training data set in various graded levels of certainty. Experimental results presented here show that
... Show MoreThe efforts in designing and developing lightweight cryptography (LWC) started a decade ago. Many scholarly studies in literature report the enhancement of conventional cryptographic algorithms and the development of new algorithms. This significant number of studies resulted in the rise of many review studies on LWC in IoT. Due to the vast number of review studies on LWC in IoT, it is not known what the studies cover and how extensive the review studies are. Therefore, this article aimed to bridge the gap in the review studies by conducting a systematic scoping study. It analyzed the existing review articles on LWC in IoT to discover the extensiveness of the reviews and the topics covered. The results of the study suggested that many re
... Show MorePreparation of identical independent photons is the core of many quantum applications such as entanglement swapping and entangling process. In this work, Hong-Ou-Mandel experiment was performed to evaluate the degree of indistinguishability between independent photons generated from two independent weak coherent sources working at 640 nm. The visibility was 46%, close to the theoretical limit of 50%. The implemented setup can be adopted in quantum key distribution experiments carried out with free space as the channel link, as all the devices and components used are operative in the visible range of the electromagnetic spectrum.
Variable-Length Subnet Masks (VLSM), often referred to as "subnetting a subnet", is used to maximize addressing efficiency. The network administrator is able to use a long mask on networks with few hosts, and a short mask on subnets with many hosts. This addressing scheme allows growth and does not involve wasting addresses. VLSM gives a way of subnetting a network with minimal loses of IP addresses for a specific range. Unfortunately, the network administrator has to perform several mathematical steps (or use charts) to get the required results from VLSM. In this paper, a simple graph simulator is proposed (using Visual Basic 6.0 Language) to perform all the required mathematical steps and to display the obtained required information (the
... Show MoreVariable-Length Subnet Masks (VLSM), often referred to as "subnetting a subnet", is used to maximize addressing efficiency. The network administrator is able to use a long mask on networks with few hosts, and a short mask on subnets with many hosts. This addressing scheme allows growth and does not involve wasting addresses. VLSM gives a way of subnetting a network with
minimal loses of IP addresses for a specific range. Unfortunately, the network administrator has to perform several mathematical steps (or use charts) to get the required results from VLSM. In this paper, a simple graph simulator is proposed (using Visual Basic 6.0 Language) to perform all the required mathematical steps and to display the obtained required informatio
The technological development in the field of information and communication has been accompanied by the emergence of security challenges related to the transmission of information. Encryption is a good solution. An encryption process is one of the traditional methods to protect the plain text, by converting it into inarticulate form. Encryption implemented can be occurred by using some substitute techniques, shifting techniques, or mathematical operations. This paper proposed a method with two branches to encrypt text. The first branch is a new mathematical model to create and exchange keys, the proposed key exchange method is the development of Diffie-Hellman. It is a new mathematical operations model to exchange keys based on prime num
... Show MoreThe semiempirical (PM3) and DFT quantum mechanical methods were used to investigate the theoretical degradation of Indigo dye. The chemical reactivity of the Indigo dye was evaluated by comparing the potential energy stability of the mean bonds. Seven transition states were suggested and studied to estimate the actually starting step of the degradation reaction. The bond length and bond angle calculations indicate that the best active site in the Indigo dye molecule is at C10=C11. The most possible transition states are examined for all suggested paths of Indigo dye degradation predicated on zero-point energy and imaginary frequency. The first starting step of the reaction mechanism is proposed. The change in enthalpy, Gibbs free energ
... Show MoreThis paper shows an approach for Electromyography (ECG) signal processing based on linear and nonlinear adaptive filtering using Recursive Least Square (RLS) algorithm to remove two kinds of noise that affected the ECG signal. These are the High Frequency Noise (HFN) and Low Frequency Noise (LFN). Simulation is performed in Matlab. The ECG, HFN and LFN signals used in this study were downloaded from ftp://ftp.ieee.org/uploads/press/rangayyan/, and then the filtering process was obtained by using adaptive finite impulse response (FIR) that illustrated better results than infinite impulse response (IIR) filters did.
Fiber-to-the-Home (FTTH) has long been recognized as a technology that provides future proof bandwidth [1], but has generally been too expensive to implement on a wide scale. However, reductions in the cost of electro-optic components and improvements in the handling of fiber optics now make FTTH a cost effective solution in many situations. The transition to FTTH in the access network is also a benefit for both consumers and service providers because it opens up the near limitless capacity of the core long-haul network to the local user. In this paper individual passive optical components, transceivers, and fibers has been put together to form a complete FTTH network. Then the implementation of the under construction Baghdad/Al
... Show More