Dielectric barrier discharges (DBD) can be described as the presence of contact with the discharge of one or more insulating layers located between two cylindrical or flat electrodes connected to an AC/pulse dc power supply. In this work, the properties of the plasma generated by dielectric barrier discharge (DBD) system without and with a glass insulator were studied. The plasma was generated at a constant voltage of 4 kV and fixed distance between the electrodes of 5 mm, and with a variable flow rate of argon gas (0.5, 1, 1.5, 2 and 2.5) L/min. The emission spectra of the DBD plasmas at different flow rates of argon gas have been recorded. Boltzmann plot method was used to calculate the plasma electron temperature (Te), and Stark broadening method was used to calculate the electron density (ne). © 2024 American Institute of Physics Inc.. All rights reserved.
The particle-hole state densities have been calculated for 232Th in
the case of incident neutron with , 1 Z Z T T T T and 2 Z T T .
The finite well depth, surface effect, isospin and Pauli correction are
considered in the calculation of the state densities and then the
transition rates. The isospin correction function ( ) iso f has been
examined for different exciton configurations and at different
excitation energies up to 100 MeV. The present results are indicated
that the included corrections have more affected on transition rates
behavior for , , and above 30MeV excitation energy
this work, a simple method was used to prepare the MnO2 nanoparticles. These nanoparticles then were characterized by several techniques, such as X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy (SEM) and atomic force microscope (AFM). The results showed that the diffraction peak of MnO2 nanoparticles was similar to that of standard data. The images of AFM and SEM indicated that the MnO2 nanorods were growing from the MnO2 nano spherical shape. PVA-pentaerythritol/MnO2 nanocomposite films were fabricated by evaporating casting method. The dielectric constant and loss tangent of P-Ery/MnO2 films were measured between 10 kHz and 1 MHz using LCR. As the content of MnO2 increased, the dielectric constant
... Show MoreAn experimental study is made here to investigate the discharge coefficient for contracted rectangular Sharp crested weirs. Three Models are used, each with different weir width to flume width ratios (0.333, 0.5, and 0.666). The experimental work is conducted in a standard flume with high-precision head and flow measuring devices. Results are used to find a dimensionless equation for the discharge coefficient variation with geometrical, flow, and fluid properties. These are the ratio of the total head to the weir height, the ratio of the contracted weir width to the flume width, the ratio of the total head to the contracted width, and Reynolds and Weber numbers. Results show that the relationship between the discharge co
... Show MoreThe brief description to the theory of propagation of electromagnetic waves in plasma was done. The cutoff and resonance regions have been showed. The principles of plasma heating at electron cyclotron resonance (ECRH) method have been mentioned. The numerical simulation to three different station: Tosca station in United Kingdom, ISX-B station in USA and T-10 station in Russia had been done. The optical depth and the friction of energy absorbed A have been calculated. The simulation results indicate that both and A are increase with size of the tokamak and it is possible to obtain full absorption in large tokamak.
Iraqi calcium bentonite was activated via acidification to study its structural and electrical properties. The elemental analysis of treated bentonite was determined by using X-ray fluorescence while the unit crystal structure was studied through X-ray diffraction showing disappearance of some fundamental reflections due to the treatment processes. The surface morphology, on the other hand, was studied thoroughly by Scanning Electron microscopy SEM and Atomic Force Microscope AFM showing some fragments of montmorillonite sheets. Furthermore, the electrical properties of bentonite were studied including: The dielectric permittivity, conductivity, tangent loss factor, and impedance with range of frequency (0.1-1000 KHz) at different temperatu
... Show MoreABSTRACT
Background : The aim of this work is to assess the role of breast sonography and ductography in the evaluation of different causes of nipple discharge.
Methods : The study will be carried out on twenty-five female patients referred to the Radiodiagnosis department at Alexandria Main University Hospital presenting with nipple discharge.
They were divided into two groups:
Group I include 10 patients (40%) with surgically significant nipple discharge who were the patients with unilateral, uniorificial surgically significant colour type nipple discharge .They were investigated by mammography, sonography, and ductography.
Group II include 15 patients
... Show MoreThe permeability is the most important parameter that indicates how efficient the reservoir fluids flow through the rock pores to the wellbore. Well-log evaluation and core measurements techniques are typically used to estimate it. In this paper, the permeability has been predicted by using classical and Flow zone indicator methods. A comparison between the two methods shows the superiority of the FZI method correlations, these correlations can be used to estimate permeability in un-cored wells with a good approximation.
A theoretical investigation is carried out to study the effect of a pencil electron beam propagating inside the plasma region determining the hydrodynamic densities distribution with the aid of numerical analysis finite deference method (FDM).The plasma is generated and trapped by annular electron beams of fixed electron density 1x1014 m-3. The result of the study shows that the hydrodynamic density behaves as the increase in pencil electron beam. The hydrodynamic density ratio goes to more than double as the increase in pencil electron beam density to 1x1018 m-3.