Dielectric barrier discharges (DBD) can be described as the presence of contact with the discharge of one or more insulating layers located between two cylindrical or flat electrodes connected to an AC/pulse dc power supply. In this work, the properties of the plasma generated by dielectric barrier discharge (DBD) system without and with a glass insulator were studied. The plasma was generated at a constant voltage of 4 kV and fixed distance between the electrodes of 5 mm, and with a variable flow rate of argon gas (0.5, 1, 1.5, 2 and 2.5) L/min. The emission spectra of the DBD plasmas at different flow rates of argon gas have been recorded. Boltzmann plot method was used to calculate the plasma electron temperature (Te), and Stark broadening method was used to calculate the electron density (ne). © 2024 American Institute of Physics Inc.. All rights reserved.
This study investigated the effect of applying an external magnetic field on the characteristics of laser-induced plasma, such as its parameters plasma, magnetization properties, emission line intensities, and plasma coefficients, for plasma induced from zinc oxide: aluminum composite (ZO:AL) at an atomic ratio of 0.3 %. Plasma properties include magnetization and emission line intensities. The excitation was done by a pulsed laser of Nd:YAG with 400 mJ energy at atmospheric pressure. Both the electron temperature and number density were determined with the help of the Stark effect principle and the Boltzmann-Plot method. There was a rise in the amount of (ne) and (Te) that was produced
... Show MoreNanostructural cupric oxide (CuO) films were prepared on Si and glass substrate by pulsed laser deposition technique (PLD) using laser Nd:YAG, using different laser pulses energies from 200 to 600 mJ. The X-ray diffraction pattern (XRD) of the films showed a polycrystalline structure with a monoclinic symmetry and preferred orientation toward (111) plane with nano structure. The crystallite size was increasing with increasing of laser pulse energy. Optical properties was characterized by using UV–vis spectrometer in the wave lengthrange (200-1100) nm at room temperature. The results showed that the transmission spectrum decreases with the laser pulses energy increase. Sensitivity of NO2 gas at different operating temperatures, (50°C,
... Show MoreThe fauna of bees (Hymenoptera, Apoidea) from different regions of Iraq is surveyed in this study; there were 16 species, 13 genera that belong to four families which are collected in this investigation.
Also, all the species that are recorded for Iraq in previous investigations are revised; totally there are 110 species, 32 genera belonging to five families: Apidae, Andernidae, Colletidae, Halictidae and Megachilidae were listed.
The spray quality of two spraying agents with different physical properties was investigated under laboratory conditions to find whether the measurement of deposited drops could be affected by spraying those agents. The first spraying agent Moddus, which is a plant growth regulator, has a surface tension of 28 mN m-1 with almost half the value of the second spraying agent Kelpak (58 mN m-1). A mini boom sprayer containing three flat fan nozzles (XR 11003) was used in the test with three traveling speeds (4.74, 5.42 and 8.13 km. h-1). The test was performed to evaluate the quality of spray drops (spray coverage, spray density and stains diameter) after they were deposited on water sensitive papers (WSP). The results showed a higher ability o
... Show MoreIn the field of research in the investment of gas fields, this requires that we first look at the center of the contracting parties in terms of the guarantee means granted to them under the contract, which constitute a means of safety and motivation to enter as major parties in the investment project. In turn, we will discuss the minimum guarantees, which are the most important guarantees granted to each of the two parties to the contract, namely the national party and the investor.
In this work, the spectra for plasma glow produced by pulse
Nd:YAG laser (λ=532 and 1064nm) on Ag:Al alloy with same molar
ratio samples in distilled water were analyzed by studying the atomic
lines compared with aluminum and silver strong standard lines. The
effect of laser energies of the range 300 to 800 mJ on spectral lines,
produced by laser ablation, were investigated using optical
spectroscopy. The electron temperature was found to be increased
from 1.698 to 1.899 eV, while the electron density decreased from
2.247×1015 to 5.08×1014 cm-3 with increasing laser energy from 300
to 800 mJ with wavelength of 1064 nm. The values of electron
temperature using second harmonic frequency are greater than of<