Preferred Language
Articles
/
GBbn4IkBVTCNdQwCw45A
Prediction of ROP Zones Using Deep Learning Algorithms and Voting Classifier Technique
...Show More Authors
Abstract<p>Retinopathy of prematurity (ROP) can cause blindness in premature neonates. It is diagnosed when new blood vessels form abnormally in the retina. However, people at high risk of ROP might benefit significantly from early detection and treatment. Therefore, early diagnosis of ROP is vital in averting visual impairment. However, due to a lack of medical experience in detecting this condition, many people refuse treatment; this is especially troublesome given the rising cases of ROP. To deal with this problem, we trained three transfer learning models (VGG-19, ResNet-50, and EfficientNetB5) and a convolutional neural network (CNN) to identify the zones of ROP in preterm newborns. The dataset to train the model contains 1365 fundus images from the ROP screening. This dataset was gathered from the Private Clinic Al-Amal Eye center in Baghdad, Iraq. The models above are ensemble through voting classifier techniques to increase the performance. The proposed method had an overall accuracy of 88.82 percent when employing the voting classifier. On the other hand, EfficientNetB5 has outperformed other models in terms of accuracy with 87.27%.</p>
Scopus Clarivate Crossref
View Publication
Publication Date
Fri Aug 13 2021
Journal Name
Neural Computing And Applications
Integration of extreme gradient boosting feature selection approach with machine learning models: application of weather relative humidity prediction
...Show More Authors

View Publication
Scopus (61)
Crossref (52)
Scopus Clarivate Crossref
Publication Date
Sun Dec 31 2023
Journal Name
Iraqi Journal Of Information And Communication Technology
EEG Signal Classification Based on Orthogonal Polynomials, Sparse Filter and SVM Classifier
...Show More Authors

This work implements an Electroencephalogram (EEG) signal classifier. The implemented method uses Orthogonal Polynomials (OP) to convert the EEG signal samples to moments. A Sparse Filter (SF) reduces the number of converted moments to increase the classification accuracy. A Support Vector Machine (SVM) is used to classify the reduced moments between two classes. The proposed method’s performance is tested and compared with two methods by using two datasets. The datasets are divided into 80% for training and 20% for testing, with 5 -fold used for cross-validation. The results show that this method overcomes the accuracy of other methods. The proposed method’s best accuracy is 95.6% and 99.5%, respectively. Finally, from the results, it

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Fri Apr 01 2022
Journal Name
Civil Engineering Journal
Prediction of Urban Spatial Changes Pattern Using Markov Chain
...Show More Authors

Urban land uses of all kinds are the constituent elements of the urban spatial structure. Because of the influence of economic and social factors, cities in general are characterized by the dynamic state of their elements over time. Urban functions occur in a certain way with different spatial patterns. Hence, urban planners and the relevant urban management teams should understand the future spatial pattern of these changes by resorting to quantitative models in spatial planning. This is to ensure that future predictions are made with a high level of accuracy so that appropriate strategies can be used to address the problems arising from such changes. The Markov chain method is one of the quantitative models used in spatial planning to ana

... Show More
View Publication
Scopus (22)
Crossref (15)
Scopus Clarivate Crossref
Publication Date
Mon Oct 29 2018
Journal Name
International Journal Of Women's Health And Reproduction Sciences
Prediction of Placenta Accreta Using Hyperglycosylated Human Chorionic Gonadotropin
...Show More Authors

Objectives: Hyperglycosylated human chorionic gonadotropin (hCG) is a variant of hCG. In addition, it has a different oligosaccharide structure compared to the regular hCG and promotes the invasion and differentiation of peripheral cytotrophoblast. This study aimed to measure hyperglycosylated hCG as a predictor in the diagnosis of placenta accreta. Materials and Methods: In general, 90 pregnant women were involved in this case-control study among which, 30 ladies (control group) were pregnant within the gestational age of ≥36 weeks with at least one previous caesarean section and a normal sited placenta in transabdominal ultrasound (TAU). The other 60 pregnant women (case

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Clarivate Crossref
Publication Date
Tue Sep 03 2019
Journal Name
Eastern-european Journal Of Enterprise Technologies
Prediction of spot welding parameters using fuzzy logic controlling
...Show More Authors

View Publication
Scopus (5)
Crossref (4)
Scopus Crossref
Publication Date
Sun Mar 03 2024
Journal Name
Mesopotamian Journal Of Cybersecurity
Using Information Technology for Comprehensive Analysis and Prediction in Forensic Evidence
...Show More Authors

With the escalation of cybercriminal activities, the demand for forensic investigations into these crimeshas grown significantly. However, the concept of systematic pre-preparation for potential forensicexaminations during the software design phase, known as forensic readiness, has only recently gainedattention. Against the backdrop of surging urban crime rates, this study aims to conduct a rigorous andprecise analysis and forecast of crime rates in Los Angeles, employing advanced Artificial Intelligence(AI) technologies. This research amalgamates diverse datasets encompassing crime history, varioussocio-economic indicators, and geographical locations to attain a comprehensive understanding of howcrimes manifest within the city. Lev

... Show More
View Publication
Scopus (15)
Crossref (5)
Scopus Crossref
Publication Date
Tue Apr 02 2019
Journal Name
Artificial Intelligence Research
A three-stage learning algorithm for deep multilayer perceptron with effective weight initialisation based on sparse auto-encoder
...Show More Authors

A three-stage learning algorithm for deep multilayer perceptron (DMLP) with effective weight initialisation based on sparse auto-encoder is proposed in this paper, which aims to overcome difficulties in training deep neural networks with limited training data in high-dimensional feature space. At the first stage, unsupervised learning is adopted using sparse auto-encoder to obtain the initial weights of the feature extraction layers of the DMLP. At the second stage, error back-propagation is used to train the DMLP by fixing the weights obtained at the first stage for its feature extraction layers. At the third stage, all the weights of the DMLP obtained at the second stage are refined by error back-propagation. Network structures an

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Sun Mar 30 2025
Journal Name
Mustansiriyah Journal Of Pure And Applied Sciences
Secure E-voting authentication system employing biometric technology, Crypto-Watermarking Approach and blockchain technology: A Review
...Show More Authors

Moderately, advanced national election technologies have improved political systems. As electronic voting (e-voting) systems advance, security threats like impersonation, ballot tampering, and result manipulation increase. These challenges are addressed through a review covering biometric authentication, watermarking, and blockchain technologies, each of which plays a crucial role in improving the security of e-voting systems. More precisely, the biometric authentication is being examined due to its ability in identify the voters and reducing the risks of impersonation. The study also explores the blockchain technology to decentralize the elections, enhance the transparency and ensure the prevention of any unauthorized alteration or

... Show More
View Publication
Crossref
Publication Date
Sun Dec 01 2019
Journal Name
Ieee Xplore
A Hybrid Modified Lightweight Algorithm Combined of Two Cryptography Algorithms PRESENT and Salsa20 Using Chaotic System
...Show More Authors

Cryptography algorithms play a critical role in information technology against various attacks witnessed in the digital era. Many studies and algorithms are done to achieve security issues for information systems. The high complexity of computational operations characterizes the traditional cryptography algorithms. On the other hand, lightweight algorithms are the way to solve most of the security issues that encounter applying traditional cryptography in constrained devices. However, a symmetric cipher is widely applied for ensuring the security of data communication in constraint devices. In this study, we proposed a hybrid algorithm based on two cryptography algorithms PRESENT and Salsa20. Also, a 2D logistic map of a chaotic system is a

... Show More
Scopus (29)
Crossref (15)
Scopus Crossref
Publication Date
Wed Sep 01 2021
Journal Name
International Journal Of Nonlinear Analysis And Application
Suggested methods for prediction using semiparametric regression function
...Show More Authors

Ferritin is a key organizer of protected deregulation, particularly below risky hyperferritinemia, by straight immune-suppressive and pro-inflammatory things. , We conclude that there is a significant association between levels of ferritin and the harshness of COVID-19. In this paper we introduce a semi- parametric method for prediction by making a combination between NN and regression models. So, two methodologies are adopted, Neural Network (NN) and regression model in design the model; the data were collected from مستشفى دار التمريض الخاص for period 11/7/2021- 23/7/2021, we have 100 person, With COVID 12 Female & 38 Male out of 50, while 26 Female & 24 Male non COVID out of 50. The input variables of the NN m

... Show More
Preview PDF
Scopus