In this paper, precision agriculture system is introduced based on Wireless Sensor Network (WSN). Soil moisture considered one of environment factors that effect on crop. The period of irrigation must be monitored. Neural network capable of learning the behavior of the agricultural soil in absence of mathematical model. This paper introduced modified type of neural network that is known as Spiking Neural Network (SNN). In this work, the precision agriculture system is modeled, contains two SNNs which have been identified off-line based on logged data, one of these SNNs represents the monitor that located at sink where the period of irrigation is calculated and the other represents the soil. In addition, to reduce p
... Show MoreZiegler and Nichols proposed the well-known Ziegler-Nichols method to tune the coefficients of PID controller. This tuning method is simple and gives fixed values for the coefficients which make PID controller have weak adaptabilities for the model parameters variation and changing in operating conditions. In order to achieve adaptive controller, the Neural Network (NN) self-tuning PID control is proposed in this paper which combines conventional PID controller and Neural Network learning capabilities. The proportional, integral and derivative (KP, KI, KD) gains are self tuned on-line by the NN output which is obtained due to the error value on the desired output of the system under control. The conventio
... Show MoreIdentifying breast cancer utilizing artificial intelligence technologies is valuable and has a great influence on the early detection of diseases. It also can save humanity by giving them a better chance to be treated in the earlier stages of cancer. During the last decade, deep neural networks (DNN) and machine learning (ML) systems have been widely used by almost every segment in medical centers due to their accurate identification and recognition of diseases, especially when trained using many datasets/samples. in this paper, a proposed two hidden layers DNN with a reduction in the number of additions and multiplications in each neuron. The number of bits and binary points of inputs and weights can be changed using the mask configuration
... Show MoreRecently, the phenomenon of the spread of fake news or misinformation in most fields has taken on a wide resonance in societies. Combating this phenomenon and detecting misleading information manually is rather boring, takes a long time, and impractical. It is therefore necessary to rely on the fields of artificial intelligence to solve this problem. As such, this study aims to use deep learning techniques to detect Arabic fake news based on Arabic dataset called the AraNews dataset. This dataset contains news articles covering multiple fields such as politics, economy, culture, sports and others. A Hybrid Deep Neural Network has been proposed to improve accuracy. This network focuses on the properties of both the Text-Convolution Neural
... Show MoreA simple setup of random number generator is proposed. The random number generation is based on the shot-noise fluctuations in a p-i-n photodiode. These fluctuations that are defined as shot noise are based on a stationary random process whose statistical properties reflect Poisson statistics associated with photon streams. It has its origin in the quantum nature of light and it is related to vacuum fluctuations. Two photodiodes were used and their shot noise fluctuations were subtracted. The difference was applied to a comparator to obtain the random sequence.
The calculation of the oil density is more complex due to a wide range of pressuresand temperatures, which are always determined by specific conditions, pressure andtemperature. Therefore, the calculations that depend on oil components are moreaccurate and easier in finding such kind of requirements. The analyses of twenty liveoil samples are utilized. The three parameters Peng Robinson equation of state istuned to get match between measured and calculated oil viscosity. The Lohrenz-Bray-Clark (LBC) viscosity calculation technique is adopted to calculate the viscosity of oilfrom the given composition, pressure and temperature for 20 samples. The tunedequation of state is used to generate oil viscosity values for a range of temperatu
... Show MoreSeveral correlations have been proposed for bubble point pressure, however, the correlations could not predict bubble point pressure accurately over the wide range of operating conditions. This study presents Artificial Neural Network (ANN) model for predicting the bubble point pressure especially for oil fields in Iraq. The most affecting parameters were used as the input layer to the network. Those were reservoir temperature, oil gravity, solution gas-oil ratio and gas relative density. The model was developed using 104 real data points collected from Iraqi reservoirs. The data was divided into two groups: the first was used to train the ANN model, and the second was used to test the model to evaluate their accuracy and trend stability
... Show MoreThe economy is exceptionally reliant on agricultural productivity. Therefore, in domain of agriculture, plant infection discovery is a vital job because it gives promising advance towards the development of agricultural production. In this work, a framework for potato diseases classification based on feed foreword neural network is proposed. The objective of this work is presenting a system that can detect and classify four kinds of potato tubers diseases; black dot, common scab, potato virus Y and early blight based on their images. The presented PDCNN framework comprises three levels: the pre-processing is first level, which is based on K-means clustering algorithm to detect the infected area from potato image. The s
... Show More