Toxic substances have been released into water supplies in recent decades because of fast industrialization and population growth. Fenton electrochemical process has been addressed to treat wastewater which is very popular because of its high efficiency and straightforward design. One of the advanced oxidation processes (AOPs) is electro-Fenton (EF) process, and electrode material significantly affects its performance. Nickel foam was chosen as the source of electro-generated hydrogen peroxide (H2O2) due to its good characteristics. In the present study, the main goals were to explore the effects of operation parameters (FeSO4 concentration, current density, and electrolysis time) on the catalytic performance that was optimized by response surface methodology (RSM). According to the results, nickel foam made an excellent choice as cathode material. The pH value was adjusted at 3 and the airflow at 10 L/h for all experiments. It was found that the optimal conditions were current density of 4.23 mA/cm2, Fe2+ dosage of 0.1 mM, and time of 5 h to obtain the removal rates of phenol and chemical oxygen demand (COD) of 81.335% and 79.1%, respectively. The results indicated that time had the highest effect on the phenol and COD removal efficiencies, while the impact of current density was the lowest. The high R2 value of the model equation (98.03%) confirmed its suitability.
There are many studies dealt with handoff management in mobile communication systems and some of these studies presented handoff schemes to manage this important process in cellular network. All previous schemes used relative signal strength (RSS) measurements. In this work, a new proposed handoff scheme had been presented depending not only on the RSS measurements but also used the threshold distance and neighboring BSS power margins in order to improve the handoff management process. We submitted here a threshold RSS as a condition to make a handoff when a mobile station moves from one cell to another this at first, then we submitted also a specified margin between the current received signal and the ongoing BS's received signal must be s
... Show MoreWith the recent developments of technology and the advances in artificial intelligent and machine learning techniques, it becomes possible for the robot to acquire and show the emotions as a part of Human-Robot Interaction (HRI). An emotional robot can recognize the emotional states of humans so that it will be able to interact more naturally with its human counterpart in different environments. In this article, a survey on emotion recognition for HRI systems has been presented. The survey aims to achieve two objectives. Firstly, it aims to discuss the main challenges that face researchers when building emotional HRI systems. Secondly, it seeks to identify sensing channels that can be used to detect emotions and provides a literature review
... Show MoreMost of the water pollutants with dyes are leftovers from industries, including textiles, wool and others. There are many ways to remove dyes such as sorption, oxidation, coagulation, filtration, and biodegradation, Chlorination, ozonation, chemical precipitation, adsorption, electrochemical processes, membrane approaches, and biological treatment are among the most widely used technologies for removing colors from wastewater. Dyes are divided into two types: natural dyes and synthetic dyes.
Visible light communication (VLC) is an upcoming wireless technology for next-generation communication for high-speed data transmission. It has the potential for capacity enhancement due to its characteristic large bandwidth. Concerning signal processing and suitable transceiver design for the VLC application, an amplification-based optical transceiver is proposed in this article. The transmitter consists of a driver and laser diode as the light source, while the receiver contains a photodiode and signal amplifying circuit. The design model is proposed for its simplicity in replacing the trans-impedance and transconductance circuits of the conventional modules by a simple amplification circuit and interface converter. Th
... Show MoreAbstract Software-Defined Networking (commonly referred to as SDN) is a newer paradigm that develops the concept of a software-driven network by separating data and control planes. It can handle the traditional network problems. However, this excellent architecture is subjected to various security threats. One of these issues is the distributed denial of service (DDoS) attack, which is difficult to contain in this kind of software-based network. Several security solutions have been proposed recently to secure SDN against DDoS attacks. This paper aims to analyze and discuss machine learning-based systems for SDN security networks from DDoS attack. The results have indicated that the algorithms for machine learning can be used to detect DDoS
... Show More