The fast evolution of cyberattacks in the Internet of Things (IoT) area, presents new security challenges concerning Zero Day (ZD) attacks, due to the growth of both numbers and the diversity of new cyberattacks. Furthermore, Intrusion Detection System (IDSs) relying on a dataset of historical or signature‐based datasets often perform poorly in ZD detection. A new technique for detecting zero‐day (ZD) attacks in IoT‐based Conventional Spiking Neural Networks (CSNN), termed ZD‐CSNN, is proposed. The model comprises three key levels: (1) Data Pre‐processing, in this level a thorough cleaning process is applied to the CIC IoT Dataset 2023, which contains both malicious and the most recent attack patterns in network traffic, ensuring data quality for analysis, (2) CSNN‐based Detection, where outlier identification is conducted by comparing two dataset groups (the normal set and the attack set) within the same time period to enhance anomaly detection and (3) In the evaluation level, the detection performance of the proposed model is assessed by comparing it with two benchmark models: ZD‐Deep Learning (ZD‐DL) and ZD‐ Convolutional Neural Network (ZD‐CNN). The implementation results demonstrate that ZD‐ CSNN achieves superior accuracy in detecting zero‐day attacks compared to both ZD‐DL and ZD‐CNN.
Each school of Islamic jurisprudence has principles and rules upon which the diligent work in these schools is based. This is due to the view of sanctification of these rulings, as they are divine rulings. Therefore, the goal is to reach a ruling that represents the intent of the legislator as much as possible.
Hence, these schools of thought established rules for issuing fatwas with the intention of restricting the performance of a fatwa to the hands of those who are qualified for it and have met its conditions, so they gave priority to the most knowledgeable person over others to perform the fatwa. In the Hanafi school of thought, for example, the saying of Imam Abu Hanifa (may God have mercy on him) is given precedence over others,
This research aims to:
1 – Make a proposed module for (aesthetics) for the second stage - Department of Art Education under education theories.
2 - Verification from the effect of the proposed module on student achievement and motivation towards learning aesthetics material.
To verification the second goal we wording these two hypotheses:
1- There are no individual differences with statistically significant at level (0.05) between the student's scores average. (Experimental group ) who studied according to the proposed module and the average student's scores (control group) who studied in the usual way for the achievement test for the Aesthetics material.
2- There are no individual differences with statistically signifi
Image compression plays an important role in reducing the size and storage of data while increasing the speed of its transmission through the Internet significantly. Image compression is an important research topic for several decades and recently, with the great successes achieved by deep learning in many areas of image processing, especially image compression, and its use is increasing Gradually in the field of image compression. The deep learning neural network has also achieved great success in the field of processing and compressing various images of different sizes. In this paper, we present a structure for image compression based on the use of a Convolutional AutoEncoder (CAE) for deep learning, inspired by the diversity of human eye
... Show MoreThe meniscus has a crucial function in human anatomy, and Magnetic Resonance Imaging (M.R.I.) plays an essential role in meniscus assessment. It is difficult to identify cartilage lesions using typical image processing approaches because the M.R.I. data is so diverse. An M.R.I. data sequence comprises numerous images, and the attributes area we are searching for may differ from each image in the series. Therefore, feature extraction gets more complicated, hence specifically, traditional image processing becomes very complex. In traditional image processing, a human tells a computer what should be there, but a deep learning (D.L.) algorithm extracts the features of what is already there automatically. The surface changes become valuable when
... Show MoreMammography is at present one of the available method for early detection of masses or abnormalities which is related to breast cancer. The most common abnormalities that may indicate breast cancer are masses and calcifications. The challenge lies in early and accurate detection to overcome the development of breast cancer that affects more and more women throughout the world. Breast cancer is diagnosed at advanced stages with the help of the digital mammogram images. Masses appear in a mammogram as fine, granular clusters, which are often difficult to identify in a raw mammogram. The incidence of breast cancer in women has increased significantly in recent years.
This paper proposes a computer aided diagnostic system for the extracti
In cognitive radio system, the spectrum sensing has a major challenge in needing a sensing method, which has a high detection capability with reduced complexity. In this paper, a low-cost hybrid spectrum sensing method with an optimized detection performance based on energy and cyclostationary detectors is proposed. The method is designed such that at high signal-to-noise ratio SNR values, energy detector is used alone to perform the detection. At low SNR values, cyclostationary detector with reduced complexity may be employed to support the accurate detection. The complexity reduction is done in two ways: through reducing the number of sensing samples used in the autocorrelation process in the time domain and through using the Slid
... Show MoreDirectional Compact Geographic Forwarding (DCGF) routing protocol promises a minimal overhead generation by utilizing a smart antenna and Quality of Service (QoS) aware aggregation. However, DCGF was tested only in the attack-free scenario without involving the security elements. Therefore, an investigation was conducted to examine the routing protocol algorithm whether it is secure against attack-based networks in the presence of Denial-of-Service (DoS) attack. This analysis on DoS attack was carried out using a single optimal attacker, A1, to investigate the impact of DoS attack on DCGF in a communication link. The study showed that DCGF does not perform efficiently in terms of packet delivery ratio and energy consumption even on a sin
... Show MoreKE Sharquie, AA Noaimi, MN Almallah, Journal of Cosmetics, Dermatological Sciences and Applications, 2014 - Cited by 2