The estimation of the parameters of linear regression is based on the usual Least Square method, as this method is based on the estimation of several basic assumptions. Therefore, the accuracy of estimating the parameters of the model depends on the validity of these hypotheses. The most successful technique was the robust estimation method which is minimizing maximum likelihood estimator (MM-estimator) that proved its efficiency in this purpose. However, the use of the model becomes unrealistic and one of these assumptions is the uniformity of the variance and the normal distribution of the error. These assumptions are not achievable in the case of studying a specific problem that may include complex data of more than one model. To deal with this type of problem, a mixture of linear regression is used to model such data. In this article, we propose a genetic algorithm-based method combined with (MM-estimator), which is called in this article (RobGA), to improve the accuracy of the estimation in the final stage. We compare the suggested method with robust bi-square (MixBi) in terms of their application to real data representing blood sample. The results showed that RobGA is more efficient in estimating the parameters of the model than the MixBi method with respect to mean square error (MSE) and classification error (CE).
The rapid and enormous growth of the Internet of Things, as well as its widespread adoption, has resulted in the production of massive quantities of data that must be processed and sent to the cloud, but the delay in processing the data and the time it takes to send it to the cloud has resulted in the emergence of fog, a new generation of cloud in which the fog serves as an extension of cloud services at the edge of the network, reducing latency and traffic. The distribution of computational resources to minimize makespan and running costs is one of the disadvantages of fog computing. This paper provides a new approach for improving the task scheduling problem in a Cloud-Fog environme
The two most popular models inwell-known count regression models are Poisson and negative binomial regression models. Poisson regression is a generalized linear model form of regression analysis used to model count data and contingency tables. Poisson regression assumes the response variable Y has a Poisson distribution, and assumes the logarithm of its expected value can be modeled by a linear combination of unknown parameters. Negative binomial regression is similar to regular multiple regression except that the dependent (Y) variables an observed count that follows the negative binomial distribution. This research studies some factors affecting divorce using Poisson and negative binomial regression models. The factors are unemplo
... Show MoreIn this paper, some estimators of the unknown shape parameter and reliability function of Basic Gompertz distribution (BGD) have been obtained, such as MLE, UMVUE, and MINMSE, in addition to estimating Bayesian estimators under Scale invariant squared error loss function assuming informative prior represented by Gamma distribution and non-informative prior by using Jefferys prior. Using Monte Carlo simulation method, these estimators of the shape parameter and R(t), have been compared based on mean squared errors and integrated mean squared, respectively
Attempts were made to improve solubility and the liquisolid technology dissolving of medication flurbiprofen. Liquisolid pill was developed utilizing transcutol-HP, polyethylene glycol 400, Avecil PH 102 carrier material and Aerosil 200 layer coating material. Suitable excipient amounts were determined to produce liquisolid powder using a mathematical model. On the other hand, flurbiprofen tablet with the identical composition, directly compressed, was manufactured for comparison without the addition of any unvolatile solvent. Both powder combination characterizations and after-compression tablets were evaluated. The pure drug and physical combination, and chosen liquisolid tablets were studied in order to exclude interacting with t
... Show MoreIn this work, the finite element analysis of moving coordinates has been used to study the thermal behavior of the tissue subjected to both continuous wave and pulsed CO2 laser. The results are compared with previously published data, and a good agreement has been found, which verifies the implemented theory. Some conclusions are obtained; As pulse width decreases, or repetition rate increases, or fluence increases then the char depth is decreased which can be explained by an increase in induced energy or its rate, which increases the ablation rate, leading to a decrease in char depth. Thus: An increase in the fluence or decreasing pulse width or increasing repetition rate will increase ablation rate, which will increase the depth of cut
... Show MoreThis paper analyzes a piled-raft foundation on non-homogeneous soils with variable layer depth percentages. The present work aims to perform a three-dimensional finite element analysis of a piled-raft foundation subjected to vertical load using the PLAXIS 3D software. Parametric analysis was carried out to determine the effect of soil type and initial layer thickness. The parametric study showed that increasing the relative density from 30 % to 80 % of the upper sand layer and the thickness of the first layer has led to an increase in the ultimate load and a decrease in the settlement of piled raft foundations for the cases of sand over weak soil. In clay over weak soil, the ultimate load of the piled raft foundation w
... Show MoreThe importance of forecasting has emerged in the economic field in order to achieve economic growth, as forecasting is one of the important topics in the analysis of time series, and accurate forecasting of time series is one of the most important challenges in which we seek to make the best decision. The aim of the research is to suggest the use of hybrid models for forecasting the daily crude oil prices as the hybrid model consists of integrating the linear component, which represents Box Jenkins models and the non-linear component, which represents one of the methods of artificial intelligence, which is long short term memory (LSTM) and the gated recurrent unit (GRU) which represents deep learning models. It was found that the proposed h
... Show MoreGroundwater is an important source of fresh water especially in countries having a decrease in or no surface water; therefore itis essential to assess the quality of groundwater and find the possibility of its use in different purposes (domestic; agricultural; animal; and other purposes). In this paper samples from 66 wells lying in different places in Baghdad city were used to determine 13 water parameters, to find the quality of groundwater and evaluate the possibility of using it for human, animal and irrigation by calculating WQI, SAR, RSC and Na% and TDS indicators. WQI results showed that the groundwater in all wells are not qualified for human use, while SAR and RSC indicated that most samples are suitable for irrigation use, and
... Show MoreIt is well known that the rate of penetration is a key function for drilling engineers since it is directly related to the final well cost, thus reducing the non-productive time is a target of interest for all oil companies by optimizing the drilling processes or drilling parameters. These drilling parameters include mechanical (RPM, WOB, flow rate, SPP, torque and hook load) and travel transit time. The big challenge prediction is the complex interconnection between the drilling parameters so artificial intelligence techniques have been conducted in this study to predict ROP using operational drilling parameters and formation characteristics. In the current study, three AI techniques have been used which are neural network, fuzzy i
... Show MoreAccording to the theory of regular geometric functions, the relevance of geometry to analysis is a critical feature. One of the significant tools to study operators is to utilize the convolution product. The dynamic techniques of convolution have attracted numerous complex analyses in current research. In this effort, an attempt is made by utilizing the said techniques to study a new linear complex operator connecting an incomplete beta function and a Hurwitz–Lerch zeta function of certain meromorphic functions. Furthermore, we employ a method based on the first-order differential subordination to derive new and better differential complex inequalities, namely differential subordinations.