Fluid-structure interaction method is performed to predict the dynamic characteristics of axial fan system. A fluid-structure interface physical environment method (monolithic method) is used to couple the fluid flow solver with the structural solver. The integration of the three-dimensional Navier-Stokes equations is performed in the time Doman, simultaneously to the integration of the three dimensional structural model. The aerodynamic loads are transfer from the flow to structure and the coupling step is repeated within each time step, until the flow solution and the structural solution have converged to yield a coupled solution of the aeroelastic set of equations. Finite element method is applied to solve numerically
... Show MoreThis research was carried out to determine the impact of heat shock, electric shock and seeds in soaking nitrous acid mutagen solution on three cultivars of faba beans plant (Zaina, Aguadulce and Local) at the year 2012-2013. Factorial experiment was arranged in randomized complete block design (RCBD) with three replicates were used. The results showed that heat shock lead to early plants of 50% in flowering and an increase in the number of branches/plant and the number of seeds/pod compared to other treatments, whereas the seeds soaked in nitrous acid mutagen solution gave the highest plant height, leaf area index, number of pods/plant, seed weight, seed yield kg/ha, and did not differ significantly with treatment of electric shock in the
... Show MoreAn experimental and numerical investigation of the effect of using two types of nanofluids with suspending of (Al2O3 and CuO) nanoparticles in deionized water with a volume fraction of (0.1% vol.), in addition to use three types of fin plate configurations of (smooth, perforated, and dimple plate) to study the heat transfer enhancement characteristics of commercial fin plate heat sink for cooling computer processing unit. All experimental tests under simulated conditions by using heat flux heater element with input power range of (5, 16, 35, 70, and 100 W). The experimental parameters calculated are such as water and nanofluid as coolant with Reynolds number of (7000, 8000, 9400 and 11300); the air
... Show More Heat exchanger is an important device in the industry for cooling or heating process. To increase the efficiency of heat exchanger, nanofluids are used to enhance the convective heat . transfer relative to the base fluid. - Al2O3/water nanofluid is used as cold stream in the shell and double concentric tube heat exchanger counter current to the hot stream basis oil. These nanoparticles were of particle size of 40 nm and it was mixed with a base fluid (water) at volume
concentrations of 0.002% and 0.004%. The results showed that each of Nusselt number and overall heat transfer coefficient increased as nanofluid concentrations increased. The pressure drop of nanofluid increased slightly than the base fluid because
A recent study compared experimentally the hydraulic and thermal activity of twisted tape inserts for two types, metal foam twisted tape (MFTT) and traditional twisted tape (TTT), in a double pipe heat exchanger. The investigation goal of the innovatively designed MFTT is to enhance the heat transfer process, which provides a higher thermal enhancement factor over those of TTT under the same conditions. Heat transfer activity in terms of Nusselt number (
The one-dimensional, spherical coordinate, non-linear partial differential equation of transient heat conduction through a hollow spherical thermal insulation material of a thermal conductivity temperature dependent property proposed by an available empirical function is solved analytically using Kirchhoff’s transformation. It is assumed that this insulating material is initially at a uniform temperature. Then, it is suddenly subjected at its inner radius with a step change in temperature. Four thermal insulation materials were selected. An identical analytical solution was achieved when comparing the results of temperature distribution with available analytical solution for the same four case studies that assume a constant thermal con
... Show MoreBackground: The purpose of this study was to verify the influence of post- pressing time of acrylic resin (immediate, 6, 12 and 24 hour) on the dimensional accuracy of denture base whish is a critical factor in the retention and stability of the complete denture that may occur during polymerization shrinkage. Materials and Methods: Forty maxillary stone casts were poured in plastic mold (Columbia Dentoform corp. NEW YORK, type III dental stone (Geastone, Zeus Sri Loc.Tamburine Roccastrada, GR, Italy). The stone casts were randomly assigned into 4 groups of 10 specimens each according to the post-pressing times into (immediate, 6, 12 and 24 h.). Heat cure acrylic resin denture base was constructed according to the previously mentioned pressi
... Show MoreBackground: Polymethyl methacrylate (PMMA) is used in denture fabrication and considered as the most reliable material for the construction of removable prosthodontic appliances. The material is far from ideal in fulfilling the mechanical requirements and the effect of autoclave processing has not been fully determined. The purpose of this study was to evaluate the effect of addition of salinized (ZrO2) Nano fillers in percentages 3%, 5% and 7% by weight on some properties of heat cured acrylic processed the by autoclave and compare it with 0% (control) group . Materials and methods: The silanized(ZrO2) Nano-particles was added to PMMA powder by weight in three different percentages 3%, 5% and 7%, mixed by probe ultra-sonication machine.
... Show MoreThe one-dimensional, cylindrical coordinate, non-linear partial differential equation of transient heat conduction through a hollow cylindrical thermal insulation material of a thermal conductivity temperature dependent property proposed by an available empirical
function is solved analytically using Kirchhoff’s transformation. It is assumed that this insulating material is initially at a uniform temperature. Then, it is suddenly subjected at its inner radius with a step change in temperature. Four thermal insulation materials were selected. An identical analytical solution was achieved when comparing the results of temperature distribution with available analytical solution for the same four case studies that assume a constant the