Data generated from modern applications and the internet in healthcare is extensive and rapidly expanding. Therefore, one of the significant success factors for any application is understanding and extracting meaningful information using digital analytics tools. These tools will positively impact the application's performance and handle the challenges that can be faced to create highly consistent, logical, and information-rich summaries. This paper contains three main objectives: First, it provides several analytics methodologies that help to analyze datasets and extract useful information from them as preprocessing steps in any classification model to determine the dataset characteristics. Also, this paper provides a comparative st
... Show MoreThis work implements an Electroencephalogram (EEG) signal classifier. The implemented method uses Orthogonal Polynomials (OP) to convert the EEG signal samples to moments. A Sparse Filter (SF) reduces the number of converted moments to increase the classification accuracy. A Support Vector Machine (SVM) is used to classify the reduced moments between two classes. The proposed method’s performance is tested and compared with two methods by using two datasets. The datasets are divided into 80% for training and 20% for testing, with 5 -fold used for cross-validation. The results show that this method overcomes the accuracy of other methods. The proposed method’s best accuracy is 95.6% and 99.5%, respectively. Finally, from the results, it
... Show MoreTraffic classification is referred to as the task of categorizing traffic flows into application-aware classes such as chats, streaming, VoIP, etc. Most systems of network traffic identification are based on features. These features may be static signatures, port numbers, statistical characteristics, and so on. Current methods of data flow classification are effective, they still lack new inventive approaches to meet the needs of vital points such as real-time traffic classification, low power consumption, ), Central Processing Unit (CPU) utilization, etc. Our novel Fast Deep Packet Header Inspection (FDPHI) traffic classification proposal employs 1 Dimension Convolution Neural Network (1D-CNN) to automatically learn more representational c
... Show MoreDeep learning convolution neural network has been widely used to recognize or classify voice. Various techniques have been used together with convolution neural network to prepare voice data before the training process in developing the classification model. However, not all model can produce good classification accuracy as there are many types of voice or speech. Classification of Arabic alphabet pronunciation is a one of the types of voice and accurate pronunciation is required in the learning of the Qur’an reading. Thus, the technique to process the pronunciation and training of the processed data requires specific approach. To overcome this issue, a method based on padding and deep learning convolution neural network is proposed to
... Show MoreBackground : Although development and progress in various diagnostic methods, but still identification of remnants of skeletal and decomposing parts of human is one of the most difficult skills in forensic medicine . Gender and age estimation is also considering an important problem in the identification of unknown skull. The aims of study: To estimate volume and dimension of maxillary sinus in individuals with dentate and edentulous maxillae using CT scan, and to correlate the maxillary sinus volume in relation to gender and age. Materials and Methods : This study included 120 patients ranged from (40-69 years), divided into two groups, dentate group with fully dentate maxilla and edentulous group with complete edentulous maxilla, and e
... Show Moreאורי-צבי גרינברג, אחד המשוררים היהודים הבולטים במאה ה-20, ולפי מבקרים רבים, היה גרינברג מהמשוררים החלוצים בתקופה שמלאה בחדשנות ובתנודת האירועים הפוליטיים והביטחוניים, באירופה ובמזרח התיכון. גרינברג יליד גליציה ב-1894, גדל במשפחה חסידית, הוא הגר פלסטינה ב-1923, ומשנה ההיא גרינברג נצל את עצמו לעבודה הספרותית והפוליטית ביחד. הוא תרם להקמתם של כתבי-עת והעתונים וכתב יצירות ספרותיות רבות, רובן היו שירים בעלי
... Show MoreThe theatrical show depends in its formation on the technical system and the elements that it has for the theatrical show, and among these techniques is the lighting, where every director looked for a style and method of implementing them and giving aesthetic functions and characteristics that give the theatrical show an aesthetic and interpretive dimension, and that is through multiple expressions and connotations of the lighting in giving the show a functional and aesthetic character. Therefore, light has been shed on the lighting and its action in the theatrical show, due to its significant role in the modern theatrical shows. The current research, thus, has been divided into four chapt
... Show MoreLandlocked countries are displayed geopolitical new geo-political and intended to
countries that do not have sea views, a phenomenon present in four continents of the world
are: Africa, Europe, and Asia, and South America and the number arrived at the present time
to the (44) state the largest number of them in the continent it arrived in Africa (16) countries
in Asia (13) countries and Europe (13) In the State of South America two. This phenomenon
emerged due to the division of federations and empires and colonial treaties and others. But
the negative effects suffered by these countries may vary from one country to another, since
these countries in the continent of Europe, for example, is different from the same cou
Deep learning (DL) plays a significant role in several tasks, especially classification and prediction. Classification tasks can be efficiently achieved via convolutional neural networks (CNN) with a huge dataset, while recurrent neural networks (RNN) can perform prediction tasks due to their ability to remember time series data. In this paper, three models have been proposed to certify the evaluation track for classification and prediction tasks associated with four datasets (two for each task). These models are CNN and RNN, which include two models (Long Short Term Memory (LSTM)) and GRU (Gated Recurrent Unit). Each model is employed to work consequently over the two mentioned tasks to draw a road map of deep learning mod
... Show More