Preferred Language
Articles
/
FxYce4sBVTCNdQwCUcwp
Electricity Consumption Forecasting in Iraq with Artificial Neural Network
...Show More Authors

Scopus
Publication Date
Wed Sep 20 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Modified Radial Based Neural Network for Clustering and Routing Optimal Path in Wireless Network
...Show More Authors

Several methods have been developed for routing problem in MANETs wireless network, because it considered very important problem in this network ,we suggested proposed method based on modified radial basis function networks RBFN and Kmean++ algorithm. The modification in RBFN for routing operation in order to find the optimal path between source and destination in MANETs clusters. Modified Radial Based Neural Network is very simple, adaptable and efficient method to increase the life time of nodes, packet delivery ratio and the throughput of the network will increase and connection become more useful because the optimal path has the best parameters from other paths including the best bitrate and best life link with minimum delays. The re

... Show More
View Publication Preview PDF
Publication Date
Tue Aug 01 2017
Journal Name
Journal Of Engineering
Rigid trunk sewer deterioration prediction models using multiple discriminant and neural network models in Baghdad city, Iraq
...Show More Authors

The deterioration of buried sewers during their lifetime can be affected by several factors leading to bad performance and can damage the infrastructure similar to other engineering structures. The Hydraulic deterioration of the buried sewers caused by sewer blockages while the structural deterioration caused by sewer collapses due to sewer specifications and the surrounding soil characteristics and the groundwater level. The main objective of this research is to develop deterioration models, which are used to predict changes in sewer condition that can provide assessment tools for determining the serviceability of sewer networks in Baghdad city. Two deterioration models were developed and tested using statistical software SPSS, the

... Show More
Publication Date
Mon Jul 31 2017
Journal Name
Journal Of Engineering
Rigid Trunk Sewer Deterioration Prediction Models using Multiple Discriminant and Neural Network Models in Baghdad City, Iraq
...Show More Authors

View Publication Preview PDF
Publication Date
Sat Jun 06 2020
Journal Name
Journal Of The College Of Education For Women
Image classification with Deep Convolutional Neural Network Using Tensorflow and Transfer of Learning
...Show More Authors

The deep learning algorithm has recently achieved a lot of success, especially in the field of computer vision. This research aims to describe the classification method applied to the dataset of multiple types of images (Synthetic Aperture Radar (SAR) images and non-SAR images). In such a classification, transfer learning was used followed by fine-tuning methods. Besides, pre-trained architectures were used on the known image database ImageNet. The model VGG16 was indeed used as a feature extractor and a new classifier was trained based on extracted features.The input data mainly focused on the dataset consist of five classes including the SAR images class (houses) and the non-SAR images classes (Cats, Dogs, Horses, and Humans). The Conv

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sat Jun 03 2023
Journal Name
Iraqi Journal Of Science
Face Recognition Using Stationary wavelet transform and Neural Network with Support Vector Machine
...Show More Authors

Face recognition is a type of biometric software application that can identify a specific
individual in a digital image by analyzing and comparing patterns. It is the process of
identifying an individual using their facial features and expressions.
In this paper we proposed a face recognition system using Stationary Wavelet Transform
(SWT) with Neural Network, the SWT are applied into five levels for feature facial
extraction with probabilistic Neural Network (PNN) , the system produced good results
and then we improved the system by using two manner in Neural Network (PNN) and
Support Vector Machine(SVM) so we find that the system performance is more better
after using SVM where the result shows the performance o

... Show More
View Publication Preview PDF
Publication Date
Thu Dec 29 2016
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
N – Topological Space and Its Applications in Artificial Neural Networks
...Show More Authors

   In this paper we give definitions, properties and examples of the notion of  type Ntopological space. Throughout this paper  N is a finite positive  number, N 2. The task of this paper is to study and investigate some properties of such spaces with the existence of a relation between this space and artificial Neural Networks (NN'S), that is we applied the definition of this space in computer field and specially in parallel processing

View Publication Preview PDF
Publication Date
Sun Jun 01 2008
Journal Name
2008 Ieee International Joint Conference On Neural Networks (ieee World Congress On Computational Intelligence)
Linear block code decoder using neural network
...Show More Authors

View Publication
Scopus (12)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Solid State Technology
Image Fusion Using A Convolutional Neural Network
...Show More Authors

Image Fusion Using A Convolutional Neural Network

Publication Date
Sat Aug 03 2024
Journal Name
Proceedings Of Ninth International Congress On Information And Communication Technology
Offline Signature Verification Based on Neural Network
...Show More Authors

The investigation of signature validation is crucial to the field of personal authenticity. The biometrics-based system has been developed to support some information security features.Aperson’s signature, an essential biometric trait of a human being, can be used to verify their identification. In this study, a mechanism for automatically verifying signatures has been suggested. The offline properties of handwritten signatures are highlighted in this study which aims to verify the authenticity of handwritten signatures whether they are real or forged using computer-based machine learning techniques. The main goal of developing such systems is to verify people through the validity of their signatures. In this research, images of a group o

... Show More
Publication Date
Sun Jan 30 2022
Journal Name
Iraqi Journal Of Science
Arabic Keywords Extraction using Conventional Neural Network
...Show More Authors

    Keywords provide the reader with a summary of the contents of the document and play a significant role in information retrieval systems, especially in search engine optimization and bibliographic databases. Furthermore keywords help to classify the document into the related topic. Keywords extraction included manual extracting depends on the content of the document or article and the judgment of its author. Manual extracting of keywords is costly, consumes effort and time, and error probability. In this research an automatic Arabic keywords extraction model based on deep learning algorithms is proposed. The model consists of three main steps: preprocessing, feature extraction and classification to classify the document

... Show More
View Publication Preview PDF
Scopus (5)
Scopus Crossref