This paper proposes a better solution for EEG-based brain language signals classification, it is using machine learning and optimization algorithms. This project aims to replace the brain signal classification for language processing tasks by achieving the higher accuracy and speed process. Features extraction is performed using a modified Discrete Wavelet Transform (DWT) in this study which increases the capability of capturing signal characteristics appropriately by decomposing EEG signals into significant frequency components. A Gray Wolf Optimization (GWO) algorithm method is applied to improve the results and select the optimal features which achieves more accurate results by selecting impactful features with maximum relevance while minimizing redundancy. This optimization process improves the performance of the classification model in general. In case of classification, the Support Vector Machine (SVM) and Neural Network (NN) hybrid model is presented. This combines an SVM classifier's capacity to manage functions in high dimensional space, as well as a neural network capacity to learn non-linearly with its feature (pattern learning). The model was trained and tested on an EEG dataset and performed a classification accuracy of 97%, indicating the robustness and efficacy of our method. The results indicate that this improved classifier is able to be used in brain–computer interface systems and neurologic evaluations. The combination of machine learning and optimization techniques has established this paradigm as a highly effective way to pursue further research in EEG signal processing for brain language recognition.
The study aims to identify the level of cognitive beliefs, as well as to identify the level of self-organized learning strategies among intermediate school students. The study also aims to identify the differences in the level of self-organized learning strategies among intermediate school students in term of gender, branch (scientific, literary). In order to achieve the research objectives, the researcher designed a scale to measure the cognitive beliefs. As for the scale of self-organized learning strategies, the researcher adopted a scale of (Pintrich et al. 1991), which was translated by (Izzat Abdelhamid, 1999) , For self-organized learning strategies, the sample consisted of (400) students from the research population, whic
... Show More
The research aims to study and analysis of concurrent engineering (CE) and cost optimization (CO), and the use of concurrent engineering inputs to outputs to improve the cost, and the statement of the role of concurrent engineering in improving the quality of the product, and achieve savings in the design and manufacturing time and assembly and reduce costs, as well as employing some models to determine how much the savings in time, including the model (Lexmark) model (Pert) to determine the savings in design time for manufacturing and assembly time.
To achieve the search objectives, the General Company for Electrical and Electronic Industries \ Refrigerated Engine
... Show MoreThe main aim of this research is to introduce financing cost optimization and different financing alternatives. There are many studies about financing cost optimization. All previous studies considering the cost of financing have many shortcomings, some considered only one source of financing as a credit line without taking into account different financing alternatives. Having only one funding alternative powers, restricts contractors and leads to a very specific financing model. Although it is beneficial for the contractor to use a long-term loan to minimize interest charges and prevent a substantial withdrawal from his credit line, none of the existing financial-based planning models have considered long-term loans in
... Show MoreThe maximization of the net present value of the investment in oil field improvements is greatly aided by the optimization of well location, which plays a significant role in the production of oil. However, using of optimization methods in well placement developments is exceedingly difficult since the well placement optimization scenario involves a large number of choice variables, objective functions, and restrictions. In addition, a wide variety of computational approaches, both traditional and unconventional, have been applied in order to maximize the efficiency of well installation operations. This research demonstrates how optimization approaches used in well placement have progressed since the last time they were examined. Fol
... Show MoreAbstract
This study investigated the optimization of wear behavior of AISI 4340 steel based on the Taguchi method under various testing conditions. In this paper, a neural network and the Taguchi design method have been implemented for minimizing the wear rate in 4340 steel. A back-propagation neural network (BPNN) was developed to predict the wear rate. In the development of a predictive model, wear parameters like sliding speed, applying load and sliding distance were considered as the input model variables of the AISI 4340 steel. An analysis of variance (ANOVA) was used to determine the significant parameter affecting the wear rate. Finally, the Taguchi approach was applied to determine
... Show MoreThe purpose of this paper is to solve the stochastic demand for the unbalanced transport problem using heuristic algorithms to obtain the optimum solution, by minimizing the costs of transporting the gasoline product for the Oil Products Distribution Company of the Iraqi Ministry of Oil. The most important conclusions that were reached are the results prove the possibility of solving the random transportation problem when the demand is uncertain by the stochastic programming model. The most obvious finding to emerge from this work is that the genetic algorithm was able to address the problems of unbalanced transport, And the possibility of applying the model approved by the oil products distribution company in the Iraqi Ministry of Oil to m
... Show MoreAmong a variety of approaches introduced in the literature to establish duality theory, Fenchel duality was of great importance in convex analysis and optimization. In this paper we establish some conditions to obtain classical strong Fenchel duality for evenly convex optimization problems defined in infinite dimensional spaces. The objective function of the primal problem is a family of (possible) infinite even convex functions. The strong duality conditions we present are based on the consideration of the epigraphs of the c-conjugate of the dual objective functions and the ε-c-subdifferential of the primal objective functions.
Researchers are increasingly using multimodal biometrics to strengthen the security of biometric applications. In this study, a strong multimodal human identification model was developed to address the growing problem of spoofing attacks in biometric security systems. Through the use of metaheuristic optimization methods, such as the Genetic Algorithm(GA), Ant Colony Optimization(ACO), and Particle Swarm Optimization (PSO) for feature selection, this unique model incorporates three biometric modalities: face, iris, and fingerprint. Image pre-processing, feature extraction, critical image feature selection, and multibiometric recognition are the four main steps in the workflow of the system. To determine its performance, the model wa
... Show More