This paper proposes a better solution for EEG-based brain language signals classification, it is using machine learning and optimization algorithms. This project aims to replace the brain signal classification for language processing tasks by achieving the higher accuracy and speed process. Features extraction is performed using a modified Discrete Wavelet Transform (DWT) in this study which increases the capability of capturing signal characteristics appropriately by decomposing EEG signals into significant frequency components. A Gray Wolf Optimization (GWO) algorithm method is applied to improve the results and select the optimal features which achieves more accurate results by selecting impactful features with maximum relevance while minimizing redundancy. This optimization process improves the performance of the classification model in general. In case of classification, the Support Vector Machine (SVM) and Neural Network (NN) hybrid model is presented. This combines an SVM classifier's capacity to manage functions in high dimensional space, as well as a neural network capacity to learn non-linearly with its feature (pattern learning). The model was trained and tested on an EEG dataset and performed a classification accuracy of 97%, indicating the robustness and efficacy of our method. The results indicate that this improved classifier is able to be used in brain–computer interface systems and neurologic evaluations. The combination of machine learning and optimization techniques has established this paradigm as a highly effective way to pursue further research in EEG signal processing for brain language recognition.
Abstract
This study identified the developing of a range of students' geography learning skills and the change in their attitudes toward fieldwork as a consequence of leaning experiences that occurred within a field trip. The sample of the study consisted of (27) students within a special topic course enrolled in Geography Department at Umm Al-Qura University in Saudi Arabia in semester 2, 2018. A range of students' geography learning skills were measured by the skills questionnaire that consisted of 12 geography skills after completing field work. Changes in students' at
... Show MoreThe preparation and characterization of innovative nanocomposites based on zinc oxide nanorods (ZNR) encapsulated by graphene (Gr) nanosheets and decorated with silver (Ag), and cupper (Cu) nanoparticles (NP) were studied. The prepared nanocomposites (ZNR@Gr/Cu-Ag) were examined by different techniques including Field Emission Scanning Electron Microscope (FESEM), Transmission electron microscopy (TEM), Atomic force microscopy (AFM), UV-Vis spectrophotometer and fluorescence spectroscopy. The results showed that the ZNR has been good cover by five layers of graphene and decorated with Ag and Cu NPs with particles size of about 10-15 nm. The ZNR@Gr/Cu-Ag nanocomposites exhibit high absorption behavior in ultraviolet (UV) region of sp
... Show MoreConsidering the expanding frequency of breast cancer and high incidence of vitamin D3 [25(OH)D3] insufficiently, this investigate pointed to explain a relation between serum [25(OH)D3] (the sunshine vitamin) level and breast cancer hazard. The current study aimed to see how serum levels of each [25(OH)D3], HbA1c%, total cholesterol (TC), high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), and triglyceride (TG) were affected a woman’s risk of getting breast cancer. In 40 healthy volunteers and 69 untreated breast cancer patients with clinical and histological evidence which include outpatients and hospitalized admissions patients at the Oncology Center, Medical City / Baghdad - Iraq. Venous blood samp
... Show MoreEstimating an individual's age from a photograph of their face is critical in many applications, including intelligence and defense, border security and human-machine interaction, as well as soft biometric recognition. There has been recent progress in this discipline that focuses on the idea of deep learning. These solutions need the creation and training of deep neural networks for the sole purpose of resolving this issue. In addition, pre-trained deep neural networks are utilized in the research process for the purpose of facial recognition and fine-tuning for accurate outcomes. The purpose of this study was to offer a method for estimating human ages from the frontal view of the face in a manner that is as accurate as possible and takes
... Show MoreImitation learning is an effective method for training an autonomous agent to accomplish a task by imitating expert behaviors in their demonstrations. However, traditional imitation learning methods require a large number of expert demonstrations in order to learn a complex behavior. Such a disadvantage has limited the potential of imitation learning in complex tasks where the expert demonstrations are not sufficient. In order to address the problem, we propose a Generative Adversarial Network-based model which is designed to learn optimal policies using only a single demonstration. The proposed model is evaluated on two simulated tasks in comparison with other methods. The results show that our proposed model is capable of completing co
... Show MoreThe study aims to identify the level of cognitive beliefs, as well as to identify the level of self-organized learning strategies among intermediate school students. The study also aims to identify the differences in the level of self-organized learning strategies among intermediate school students in term of gender, branch (scientific, literary). In order to achieve the research objectives, the researcher designed a scale to measure the cognitive beliefs. As for the scale of self-organized learning strategies, the researcher adopted a scale of (Pintrich et al. 1991), which was translated by (Izzat Abdelhamid, 1999) , For self-organized learning strategies, the sample consisted of (400) students from the research population, whic
... Show MoreThe current research is a spectroscopic study of Coumarin 334 dissolved in methanol. The range of concentrations of the prepared stock solution was (3.39x10-9 to 2.03x10-8) M. Some optical characteristics of this dye were investigated such as absorbance and transmission spectra, absorption coefficient, refractive and extinction coefficients, oscillation and dispersion energies, and energy band gap. The absorbance spectra were recorded at 452 nm using Broad Band Cavity Enhanced Absorption Spectroscopy (BBCEAS) which depends on increasing the path length of the traveling light from the source to the detector. The minimum absorbance amount was 0.07 with a low concentration of 3.39x10-9 M. As a result, the ot
... Show MoreIn this study tungsten oxide and graphene oxide (GO-WO2.89) were successfully combined using the ultra-sonication method and embedded with polyphenylsulfone (PPSU) to prepare novel low-fouling membranes for ultrafiltration applications. The properties of the modified membranes and performance were investigated using Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), contact angle (CA), water permeation flux, and bovine serum albumin (BSA) rejection. It was found that the modified PPSU membrane fabricated from 0.1 wt.% of GO-WO2.89 possessed the best characteristics, with a 40.82° contact angle and 92.94% porosity. The permeation flux of the best membrane was the highest. The pure water permeation f
... Show More