This paper proposes a better solution for EEG-based brain language signals classification, it is using machine learning and optimization algorithms. This project aims to replace the brain signal classification for language processing tasks by achieving the higher accuracy and speed process. Features extraction is performed using a modified Discrete Wavelet Transform (DWT) in this study which increases the capability of capturing signal characteristics appropriately by decomposing EEG signals into significant frequency components. A Gray Wolf Optimization (GWO) algorithm method is applied to improve the results and select the optimal features which achieves more accurate results by selecting impactful features with maximum relevance while minimizing redundancy. This optimization process improves the performance of the classification model in general. In case of classification, the Support Vector Machine (SVM) and Neural Network (NN) hybrid model is presented. This combines an SVM classifier's capacity to manage functions in high dimensional space, as well as a neural network capacity to learn non-linearly with its feature (pattern learning). The model was trained and tested on an EEG dataset and performed a classification accuracy of 97%, indicating the robustness and efficacy of our method. The results indicate that this improved classifier is able to be used in brain–computer interface systems and neurologic evaluations. The combination of machine learning and optimization techniques has established this paradigm as a highly effective way to pursue further research in EEG signal processing for brain language recognition.
Introduction: Since the hallmark of gestational trophoblastic disease is trophoblastic proliferation, Ki67 is regarded as the best marker in studying hydatidiform mole.This study was conducted to evaluate the role of this proliferative marker in distinguishing among hydropic abortion, partial and complete hydatidiform mole. Materials and methods: This is a cross sectional study involving the application of Ki67 on a total of 90 histological samples of curetting materials from molar (partial and complete mole) and non molar hydropic abortion belong to Iraqi females, so three study groups were created. Immunohistochemical expression in villous cytotrophoblasts, syncytiotrophoblasts and stromal cells were recorded separately by three i
... Show MoreThe interests toward developing accurate automatic face emotion recognition methodologies are growing vastly, and it is still one of an ever growing research field in the region of computer vision, artificial intelligent and automation. However, there is a challenge to build an automated system which equals human ability to recognize facial emotion because of the lack of an effective facial feature descriptor and the difficulty of choosing proper classification method. In this paper, a geometric based feature vector has been proposed. For the classification purpose, three different types of classification methods are tested: statistical, artificial neural network (NN) and Support Vector Machine (SVM). A modified K-Means clustering algorithm
... Show MoreThe research aims to identify the impact of using the electronic participatory learning strategy according to internet programs in learning some basic basketball skills for middle first graders according to the curricular course, and the sample of research was selected in the deliberate way of students The first stage of intermediate school.As for the problem of research, the researchers said that there is a weakness in the levels of school students in terms of teaching basketball skills, which prompted the researchers to create appropriate solutions by using a participatory learning strategy.The researchers imposed statistically significant differences between pre and post-test tests, in favor of the post tests individually and in favor of
... Show MoreLand Use / Land Cover (LULC) classification is considered one of the basic tasks that decision makers and map makers rely on to evaluate the infrastructure, using different types of satellite data, despite the large spectral difference or overlap in the spectra in the same land cover in addition to the problem of aberration and the degree of inclination of the images that may be negatively affect rating performance. The main objective of this study is to develop a working method for classifying the land cover using high-resolution satellite images using object based method. Maximum likelihood pixel based supervised as well as object approaches were examined on QuickBird satellite image in Karbala, Iraq. This study illustrated that
... Show MoreThe efficiency of the Honeywords approach has been proven to be a significant tool for boosting password security. The suggested system utilizes the Meerkat Clan Algorithm (MCA) in conjunction with WordNet to produce honeywords, thereby enhancing the level of password security. The technique of generating honeywords involves data sources from WordNet, which contributes to the improvement of authenticity and diversity in the honeywords. The method encompasses a series of consecutive stages, which include the tokenization of passwords, the formation of alphabet tokens using the Meerkat Clan Algorithm (MCA), the handling of digit tokens, the creation of unique character tokens, and the consolidation of honeywords. The optimization of t
... Show MoreThe aim of this study was to Identifying The Effect of using Linear programming and Branching programming by computer in Learning and Retention of movement concatenation(Linkwork) in parallel bars in Artistic Gymnastics. The searchers have used the experimental method. The search subject of this article has been taken (30) male - students in the second class from the College of Physical Education/University of Baghdad divided into three groups; the first group applied linear programming by computer, and the second group has been applicated branching programming by computer, while precision group used traditional method in the college. The researchers concluded the results by using the statistical bag for social sciences (spss) such as both
... Show MoreThe proliferation of many editing programs based on artificial intelligence techniques has contributed to the emergence of deepfake technology. Deepfakes are committed to fabricating and falsifying facts by making a person do actions or say words that he never did or said. So that developing an algorithm for deepfakes detection is very important to discriminate real from fake media. Convolutional neural networks (CNNs) are among the most complex classifiers, but choosing the nature of the data fed to these networks is extremely important. For this reason, we capture fine texture details of input data frames using 16 Gabor filters indifferent directions and then feed them to a binary CNN classifier instead of using the red-green-blue
... Show MoreThe aim of this study to evaluate the effects of die holes diameter and speed of die on the performance of machine and feed pellet quality. Machine productivity (Kg.h-1), consumed power (kW), pellet durability (%) and pellet bulk density (g.cm-3) was studied. The study factors consisted of three diameter of die holes (3, 4, and 5 mm), and three speeds die (280, 300, and 320 rpm). Results showed with increasing of die holes diameter from 3 to 4 and to 5 mm give a significant increase in machine productivity, while consumed power, pellet durability and pellet bulk density a significant decreased. By increasing the die speed, from 280 to 300 then to 320 rpm, the machine productivity increased significantly, while consumed power, pellet durabil
... Show More