Preferred Language
Articles
/
FhhIEJUBVTCNdQwCzyWr
Enhanced EEG Signal Classification Using Machine Learning and Optimization Algorithm
...Show More Authors

This paper proposes a better solution for EEG-based brain language signals classification, it is using machine learning and optimization algorithms. This project aims to replace the brain signal classification for language processing tasks by achieving the higher accuracy and speed process. Features extraction is performed using a modified Discrete Wavelet Transform (DWT) in this study which increases the capability of capturing signal characteristics appropriately by decomposing EEG signals into significant frequency components. A Gray Wolf Optimization (GWO) algorithm method is applied to improve the results and select the optimal features which achieves more accurate results by selecting impactful features with maximum relevance while minimizing redundancy. This optimization process improves the performance of the classification model in general. In case of classification, the Support Vector Machine (SVM) and Neural Network (NN) hybrid model is presented. This combines an SVM classifier's capacity to manage functions in high dimensional space, as well as a neural network capacity to learn non-linearly with its feature (pattern learning). The model was trained and tested on an EEG dataset and performed a classification accuracy of 97%, indicating the robustness and efficacy of our method. The results indicate that this improved classifier is able to be used in brain–computer interface systems and neurologic evaluations. The combination of machine learning and optimization techniques has established this paradigm as a highly effective way to pursue further research in EEG signal processing for brain language recognition.

Scopus Crossref
View Publication
Publication Date
Sun Jun 30 2024
Journal Name
Science And Technology Indonesia
Evaluating the Biocompatibility of Maxillofacial Silicone Enhanced by Hexagonal Boron Nitride Particles
...Show More Authors

This study aims to evaluate the biocompatibility of a novel filler material intended to improve the longevity of polymer systems used in prosthetics in respect of cytotoxicity and skin irritation. RTV50F silicone elastomer incorporated with various percentages of hexagonal boron nitride (H-BN) (0.1, 0.3, 0.5, 0.7, and 1 wt%) have been tested. Silicone without H-BN was utilized as the control for comparison. The in vitro cytotoxicity test includes specimens (n=18) with 10 mm in diameter and 2 mm in thickness applied directly to the normal human fibroblast cell line (NHF) and incubated for 72 hours, then 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to determine the cell viability. The skin irritati

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Wed Mar 01 2017
Journal Name
International Communications In Heat And Mass Transfer
Optimization, modeling and accurate prediction of thermal conductivity and dynamic viscosity of stabilized ethylene glycol and water mixture Al 2 O 3 nanofluids by NSGA-II using ANN
...Show More Authors

In this study, multi-objective optimization of nanofluid aluminum oxide in a mixture of water and ethylene glycol (40:60) is studied. In order to reduce viscosity and increase thermal conductivity of nanofluids, NSGA-II algorithm is used to alter the temperature and volume fraction of nanoparticles. Neural network modeling of experimental data is used to obtain the values of viscosity and thermal conductivity on temperature and volume fraction of nanoparticles. In order to evaluate the optimization objective functions, neural network optimization is connected to NSGA-II algorithm and at any time assessment of the fitness function, the neural network model is called. Finally, Pareto Front and the corresponding optimum points are provided and

... Show More
Crossref (117)
Crossref
Publication Date
Sat Feb 01 2025
Journal Name
Saudi Medical Journal
Spectrum and classification of ATP7B variants with clinical correlation in children with Wilson disease
...Show More Authors

View Publication
Publication Date
Wed Feb 01 2023
Journal Name
Baghdad Science Journal
Breast Cancer MRI Classification Based on Fractional Entropy Image Enhancement and Deep Feature Extraction
...Show More Authors

Disease diagnosis with computer-aided methods has been extensively studied and applied in diagnosing and monitoring of several chronic diseases. Early detection and risk assessment of breast diseases based on clinical data is helpful for doctors to make early diagnosis and monitor the disease progression. The purpose of this study is to exploit the Convolutional Neural Network (CNN) in discriminating breast MRI scans into pathological and healthy. In this study, a fully automated and efficient deep features extraction algorithm that exploits the spatial information obtained from both T2W-TSE and STIR MRI sequences to discriminate between pathological and healthy breast MRI scans. The breast MRI scans are preprocessed prior to the feature

... Show More
View Publication Preview PDF
Scopus (29)
Crossref (9)
Scopus Clarivate Crossref
Publication Date
Fri Jul 01 2016
Journal Name
Journal Of Engineering And Sustainable Development
EVALUATION OF MECHANICAL PROPERTIES OF HIGH PERFORMANCE SELF-CONSOLIDATED CONCRETE ENHANCED BY DISCRETE STEEL AND POLYPROPYLENE FIBERS
...Show More Authors

High performance self-consolidating concrete HP-SCC is one of the most complex types of concrete which have the capacity to consolidated under its own weight, have excellent homogeneity and high durability. This study aims to focus on the possibility of using industrial by-products like Silica fumes SF in the preparation of HP-SCC enhanced with discrete steel fibers (DSF) and monofilament polypropylene fibers (PPF). From experimental results, it was found that using DSF with volume fraction of 0.50 %; a highly improvements were gained in the mechanical properties of HP-SCC. The compressive strength, splitting tensile strength, flexural strength and elastic modulus improved about 65.7 %, 70.5 %, 41.7 % and 80.3 % at 28 days age, respectively

... Show More
View Publication Preview PDF
Publication Date
Mon Jan 01 2024
Journal Name
Scripta Medica
The value of dynamic contrast-enhanced MRI and diffusion-weighted sequence in the evaluation of endometrial lesions
...Show More Authors

Background/Aim: Endometrial abnormalities represent a diagnostic challenge due to overlapping imaging features with normal endometrium. Aim of this study was to assess accuracy of dynamic contrast-enhanced and diffusion-weighted magnetic resonance imaging (MRI) in evaluation of endometrial lesions in comparison with T2 and to assess local staging validity and degree of myometrial invasion in malignancy. Methods: Forty patients with abnormal vaginal bleeding or sonographic thickened endometrial were recruited. MRI examination of pelvis was per-formed using 1.5 T scanner with a pelvic array coil. Conventional T1-and T2, dynamic contrast-enhanced (DCE) sequences and diffusion-weighted image (DWI) were performed. Results: Mean age of pa

... Show More
View Publication
Crossref (1)
Scopus Crossref
Publication Date
Tue May 01 2018
Journal Name
Journal Of Physics: Conference Series
Multispectral and Panchromatic used Enhancement Resolution and Study Effective Enhancement on Supervised and Unsupervised Classification Land – Cover
...Show More Authors

View Publication
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Wed Dec 01 2021
Journal Name
Baghdad Science Journal
Designing Primers with a Plant Signal Peptide to Enhance the Expression of GBA1 in Transgenic Soybean Plants
...Show More Authors

Transgenic plants offer advantages for the manufacture of recombinant proteins with terminal
mannose residues on their glycan chains. So plants are chosen as source of pharmaceutical products and for
the development of alternative expression systems to produce recombinant lysosomal enzymes. In the
present study the sequence of the natural cDNA encoding for the human lysosomal enzyme
glucocerebrosidase (GCD) was modified to enhance its expression in soybean plants. The glucocerebrosidase
gene signal peptide was substituted with that signal peptide for the Arabidopsis thaliana basic endochitinase
gene to support the co-translational translocation into the endoplasmic reticulum (ER), and the storage
vacuol

... Show More
View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Wed Nov 02 2022
Journal Name
Annals Of Forest Research
EXTRACTION AND OPTIMIZATION LIGNINOLYTIC ENZYMES LACCASE, LIGNIN PEROXIDASE AND MANGANESE PEROXIDASE FROM TERMITE
...Show More Authors

Publication Date
Sun Jan 01 2017
Journal Name
Australian Journal Of Basic And Applied Sciences
Proposed Algorithm for Gumbel Distribution Estimation
...Show More Authors

Gumbel distribution was dealt with great care by researchers and statisticians. There are traditional methods to estimate two parameters of Gumbel distribution known as Maximum Likelihood, the Method of Moments and recently the method of re-sampling called (Jackknife). However, these methods suffer from some mathematical difficulties in solving them analytically. Accordingly, there are other non-traditional methods, like the principle of the nearest neighbors, used in computer science especially, artificial intelligence algorithms, including the genetic algorithm, the artificial neural network algorithm, and others that may to be classified as meta-heuristic methods. Moreover, this principle of nearest neighbors has useful statistical featu

... Show More
Preview PDF
Crossref