This paper proposes a better solution for EEG-based brain language signals classification, it is using machine learning and optimization algorithms. This project aims to replace the brain signal classification for language processing tasks by achieving the higher accuracy and speed process. Features extraction is performed using a modified Discrete Wavelet Transform (DWT) in this study which increases the capability of capturing signal characteristics appropriately by decomposing EEG signals into significant frequency components. A Gray Wolf Optimization (GWO) algorithm method is applied to improve the results and select the optimal features which achieves more accurate results by selecting impactful features with maximum relevance while minimizing redundancy. This optimization process improves the performance of the classification model in general. In case of classification, the Support Vector Machine (SVM) and Neural Network (NN) hybrid model is presented. This combines an SVM classifier's capacity to manage functions in high dimensional space, as well as a neural network capacity to learn non-linearly with its feature (pattern learning). The model was trained and tested on an EEG dataset and performed a classification accuracy of 97%, indicating the robustness and efficacy of our method. The results indicate that this improved classifier is able to be used in brain–computer interface systems and neurologic evaluations. The combination of machine learning and optimization techniques has established this paradigm as a highly effective way to pursue further research in EEG signal processing for brain language recognition.
The surplus glycerol produced from biodiesel production process as a by-product with high quantity can be considered as a good source to prepare glycerol carbonate (GC) whereas with each 1000 kg from biodiesel obtains 100 kg from glycerol. Glycerol converted to glycerol carbonate over bio-char as a catalyst prepared by slow pyrolysis process under various temperatures from 400 ᴼC to 800 ᴼC. The char prepared at 700 ᴼC considered as a best one between the others which was manufactured to activate the transesterification reaction. GC have large scale of uses such as liquid membrane in gas separation, surfactants ,detergents , blowing agent , in plastics industry, in Pharmaceutical industry and electrolytes in lithium batteries.
... Show MoreThe aim of this study to evaluate the effects of die holes diameter and speed of die on the performance of machine and feed pellet quality. Machine productivity (Kg.h-1), consumed power (kW), pellet durability (%) and pellet bulk density (g.cm-3) was studied. The study factors consisted of three diameter of die holes (3, 4, and 5 mm), and three speeds die (280, 300, and 320 rpm). Results showed with increasing of die holes diameter from 3 to 4 and to 5 mm give a significant increase in machine productivity, while consumed power, pellet durability and pellet bulk density a significant decreased. By increasing the die speed, from 280 to 300 then to 320 rpm, the machine productivity increased significantly, while consumed power, pellet durabil
... Show MoreOne of the biomedical image problems is the appearance of the bubbles in the slide that could occur when air passes through the slide during the preparation process. These bubbles may complicate the process of analysing the histopathological images. The objective of this study is to remove the bubble noise from the histopathology images, and then predict the tissues that underlie it using the fuzzy controller in cases of remote pathological diagnosis. Fuzzy logic uses the linguistic definition to recognize the relationship between the input and the activity, rather than using difficult numerical equation. Mainly there are five parts, starting with accepting the image, passing through removing the bubbles, and ending with predict the tissues
... Show MoreCooperation spectrum sensing in cognitive radio networks has an analogy to a distributed decision in wireless sensor networks, where each sensor make local decision and those decision result are reported to a fusion center to give the final decision according to some fusion rules. In this paper the performance of cooperative spectrum sensing examines using new optimization strategy to find optimal weight and threshold curves that enables each secondary user senses the spectrum environment independently according to a floating threshold with respect to his local environment. Our proposed approach depends on proving the convexity of the famous optimization problem in cooperative spectrum sensing that stated maximizing the probability of detec
... Show MoreDetermining the face of wearing a mask from not wearing a mask from visual data such as video and still, images have been a fascinating research topic in recent decades due to the spread of the Corona pandemic, which has changed the features of the entire world and forced people to wear a mask as a way to prevent the pandemic that has calmed the entire world, and it has played an important role. Intelligent development based on artificial intelligence and computers has a very important role in the issue of safety from the pandemic, as the Topic of face recognition and identifying people who wear the mask or not in the introduction and deep education was the most prominent in this topic. Using deep learning techniques and the YOLO (”You on
... Show MoreCorrect grading of apple slices can help ensure quality and improve the marketability of the final product, which can impact the overall development of the apple slice industry post-harvest. The study intends to employ the convolutional neural network (CNN) architectures of ResNet-18 and DenseNet-201 and classical machine learning (ML) classifiers such as Wide Neural Networks (WNN), Naïve Bayes (NB), and two kernels of support vector machines (SVM) to classify apple slices into different hardness classes based on their RGB values. Our research data showed that the DenseNet-201 features classified by the SVM-Cubic kernel had the highest accuracy and lowest standard deviation (SD) among all the methods we tested, at 89.51 % 1.66 %. This
... Show MoreThe work in this paper involves the planning, design and implementation of a mobile learning system called Nahrain Mobile Learning System (NMLS). This system provides complete teaching resources, which can be accessed by the students, instructors and administrators through the mobile phones. It presents a viable alternative to Electronic learning. It focuses on the mobility and flexibility of the learning practice, and emphasizes the interaction between the learner and learning content. System users are categorized into three categories: administrators, instructors and students. Different learning activities can be carried out throughout the system, offering necessary communication tools to allow the users to communicate with each other
... Show MoreAmong the metaheuristic algorithms, population-based algorithms are an explorative search algorithm superior to the local search algorithm in terms of exploring the search space to find globally optimal solutions. However, the primary downside of such algorithms is their low exploitative capability, which prevents the expansion of the search space neighborhood for more optimal solutions. The firefly algorithm (FA) is a population-based algorithm that has been widely used in clustering problems. However, FA is limited in terms of its premature convergence when no neighborhood search strategies are employed to improve the quality of clustering solutions in the neighborhood region and exploring the global regions in the search space. On the
... Show More