This paper proposes a better solution for EEG-based brain language signals classification, it is using machine learning and optimization algorithms. This project aims to replace the brain signal classification for language processing tasks by achieving the higher accuracy and speed process. Features extraction is performed using a modified Discrete Wavelet Transform (DWT) in this study which increases the capability of capturing signal characteristics appropriately by decomposing EEG signals into significant frequency components. A Gray Wolf Optimization (GWO) algorithm method is applied to improve the results and select the optimal features which achieves more accurate results by selecting impactful features with maximum relevance while minimizing redundancy. This optimization process improves the performance of the classification model in general. In case of classification, the Support Vector Machine (SVM) and Neural Network (NN) hybrid model is presented. This combines an SVM classifier's capacity to manage functions in high dimensional space, as well as a neural network capacity to learn non-linearly with its feature (pattern learning). The model was trained and tested on an EEG dataset and performed a classification accuracy of 97%, indicating the robustness and efficacy of our method. The results indicate that this improved classifier is able to be used in brain–computer interface systems and neurologic evaluations. The combination of machine learning and optimization techniques has established this paradigm as a highly effective way to pursue further research in EEG signal processing for brain language recognition.
Dry environment study forms an important part in the field of applies geomorphology for
the wide rang of its lands which form most of the world, homeland, and Iraqi lands specially,
and what these lands include of scientific cases which needs to be searched and investigated.
They include rocks, land shapes, water supplements, its ancient soil and its active diggings are
all signs of the environment changes and effects that these lands under take over time, with
continuous remains of its features of characteristics under geo morphological dry
circumstances which works to slow change average, when the geomorphologic fearers varies
in this environment and what it contain of important economical resource. As to participl
The aim of present study is to determine the optimum parameters of friction stir welding process and known the most important parameter along with percentage contribution of each parameter which effect on tensile strength and joint efficiency of FS welded joint of dissimilar aluminum alloys AA2024-T3 and AA7075-T73 of 3 mm thick plates by applied specific number of experiments using Taguchi method .AA2024 was placed on the advancing side and AA7075 on the retreating side. FSW was achieved under three different rotation speeds (898, 1200 and 1710) rpm, three different welding speeds (20, 45 and 69) mm\min , three different pin profiles (cylindrical, threaded cylindrical and cone) and tool tilt angle 2◦. Taguchi method w
... Show MoreA simple, fast, inexpensive and sensitive method has been proposed to screen and optimize experimental factors that effecting the determination of phenylephrine hydrochloride (PHE.HCl) in pure and pharmaceutical formulations. The method is based on the development of brown-colored charge transfer (CT) complex with p-Bromanil (p-Br) in an alkaline medium (pH=9) with 1.07 min after heating at 80 °C. ‘Design of Experiments’ (DOE) employing ‘Central Composite Face Centered Design’ (CCF) and ‘Response Surface Methodology’ (RSM) were applied as an improvement to traditional ‘One Variable at Time’ (OVAT) approach to evaluate the effects of variations in selected factors (volume of 5×10-3 M p-Br, heating time, and temperature) on
... Show MoreThis study involved the treatment of textile wastewater contaminated with direct blue 15 dye (DB15) using a heterogeneous photo-Fenton-like process. Bimetallic iron/copper nanoparticles loaded on bentonite clay were used as heterogeneous catalysts and prepared via liquid-phase reduction method using eucalyptus leaves extract (E-Fe/Cu@BNPs). Characterization methods were applied to resultant particles (NPs), including SEM, BET, and FTIR techniques. The prepared NPs were found with porous and spherical shapes with a specific surface area of particles was 28.589 m2/g. The effect of main parameters on the photo-Fenton-like degradation of DB15 was investigated through batch and continuous fixed-bed systems. In batch mode, pH, H2O2 dosage, DB15 c
... Show MoreArtificial Intelligence Algorithms have been used in recent years in many scientific fields. We suggest employing artificial TABU algorithm to find the best estimate of the semi-parametric regression function with measurement errors in the explanatory variables and the dependent variable, where measurement errors appear frequently in fields such as sport, chemistry, biological sciences, medicine, and epidemiological studies, rather than an exact measurement.
Improving" Jackknife Instrumental Variable Estimation method" using A class of immun algorithm with practical application