Preferred Language
Articles
/
FhhIEJUBVTCNdQwCzyWr
Enhanced EEG Signal Classification Using Machine Learning and Optimization Algorithm
...Show More Authors

This paper proposes a better solution for EEG-based brain language signals classification, it is using machine learning and optimization algorithms. This project aims to replace the brain signal classification for language processing tasks by achieving the higher accuracy and speed process. Features extraction is performed using a modified Discrete Wavelet Transform (DWT) in this study which increases the capability of capturing signal characteristics appropriately by decomposing EEG signals into significant frequency components. A Gray Wolf Optimization (GWO) algorithm method is applied to improve the results and select the optimal features which achieves more accurate results by selecting impactful features with maximum relevance while minimizing redundancy. This optimization process improves the performance of the classification model in general. In case of classification, the Support Vector Machine (SVM) and Neural Network (NN) hybrid model is presented. This combines an SVM classifier's capacity to manage functions in high dimensional space, as well as a neural network capacity to learn non-linearly with its feature (pattern learning). The model was trained and tested on an EEG dataset and performed a classification accuracy of 97%, indicating the robustness and efficacy of our method. The results indicate that this improved classifier is able to be used in brain–computer interface systems and neurologic evaluations. The combination of machine learning and optimization techniques has established this paradigm as a highly effective way to pursue further research in EEG signal processing for brain language recognition.

Scopus Crossref
View Publication
Publication Date
Tue Aug 01 2023
Journal Name
Journal Of Ecological Engineering
Optimization of Response Surface Methodology for Removal of Cadmium Ions from Wastewater using Low Cost Materials
...Show More Authors

View Publication
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Mon Sep 30 2024
Journal Name
Iraqi Journal Of Science
Overlapping Structure Detection in Protein-Protein Interaction Networks Using a Modified Version of Particle Swarm Optimization
...Show More Authors

In today's world, the science of bioinformatics is developing rapidly, especially with regard to the analysis and study of biological networks. Scientists have used various nature-inspired algorithms to find protein complexes in protein-protein interaction (PPI) networks. These networks help scientists guess the molecular function of unknown proteins and show how cells work regularly. It is very common in PPI networks for a protein to participate in multiple functions and belong to many complexes, and as a result, complexes may overlap in the PPI networks. However, developing an efficient and reliable method to address the problem of detecting overlapping protein complexes remains a challenge since it is considered a complex and har

... Show More
View Publication
Scopus Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Journal Of Engineering
Multi-Criteria Optimization for Governmental Projects Priority Ranking Depending on Fuzzified Experts’ Opinion using Hygiene Approach
...Show More Authors

Each organization struggles to exploit each possible opportunity for gaining success and continuing with its work carrier. In this field, organization success can be concluded by fulfilling end user requirements combined with optimizing available resources usage within a specified time and acceptable quality level to gain maximum profit. The project ranking process is governed by the multi-criteria environment, which is more difficult for the governmental organization because other organizations' main target is maximizing profit constrained with available resources. The governmental organization should consider human, social, economic and many more factors. This paper focused on building a multi-criteria optimizing proje

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Jun 06 2024
Journal Name
Journal Of Applied Engineering And Technological Science (jaets)
Lightweight Block and Stream Cipher Algorithm: A Review
...Show More Authors

Most of the Internet of Things (IoT), cell phones, and Radio Frequency Identification (RFID) applications need high speed in the execution and processing of data. this is done by reducing, system energy consumption, latency, throughput, and processing time. Thus, it will affect against security of such devices and may be attacked by malicious programs. Lightweight cryptographic algorithms are one of the most ideal methods Securing these IoT applications. Cryptography obfuscates and removes the ability to capture all key information patterns ensures that all data transfers occur Safe, accurate, verified, legal and undeniable.  Fortunately, various lightweight encryption algorithms could be used to increase defense against various at

... Show More
View Publication
Scopus (2)
Scopus Crossref
Publication Date
Mon Apr 26 2021
Journal Name
Journal Of Real-time Image Processing
Fast and efficient recursive algorithm of Meixner polynomials
...Show More Authors

View Publication
Scopus (32)
Crossref (28)
Scopus Clarivate Crossref
Publication Date
Fri Feb 14 2014
Journal Name
International Journal Of Computer Applications
Parallelizing RSA Algorithm on Multicore CPU and GPU
...Show More Authors

View Publication
Crossref (10)
Crossref
Publication Date
Sun Jun 20 2021
Journal Name
Baghdad Science Journal
Multifactor Algorithm for Test Case Selection and Ordering
...Show More Authors

Regression testing being expensive, requires optimization notion. Typically, the optimization of test cases results in selecting a reduced set or subset of test cases or prioritizing the test cases to detect potential faults at an earlier phase. Many former studies revealed the heuristic-dependent mechanism to attain optimality while reducing or prioritizing test cases. Nevertheless, those studies were deprived of systematic procedures to manage tied test cases issue. Moreover, evolutionary algorithms such as the genetic process often help in depleting test cases, together with a concurrent decrease in computational runtime. However, when examining the fault detection capacity along with other parameters, is required, the method falls sh

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Tue Jun 30 2015
Journal Name
International Journal Of Computer Techniques
Multifractal-Based Features for Medical Images Classification
...Show More Authors

This paper presents a method to classify colored textural images of skin tissues. Since medical images havehighly heterogeneity, the development of reliable skin-cancer detection process is difficult, and a mono fractaldimension is not sufficient to classify images of this nature. A multifractal-based feature vectors are suggested hereas an alternative and more effective tool. At the same time multiple color channels are used to get more descriptivefeatures.Two multifractal based set of features are suggested here. The first set measures the local roughness property, whilethe second set measure the local contrast property.A combination of all the extracted features from the three colormodels gives a highest classification accuracy with 99.4

... Show More
Preview PDF
Publication Date
Tue May 01 2018
Journal Name
Journal Of Engineering
Performance enhancement of Echo Cancellation Using a Combination of Partial Update ( PU) Methods and New Variable Length LMS (NVLLMS) Algorithm
...Show More Authors

In this paper, several combination algorithms between Partial Update LMS (PU LMS) methods and previously proposed algorithm (New Variable Length LMS (NVLLMS)) have been developed. Then, the new sets of proposed algorithms were applied to an Acoustic Echo Cancellation system (AEC) in order to decrease the filter coefficients, decrease the convergence time, and enhance its performance in terms of Mean Square Error (MSE) and Echo Return Loss Enhancement (ERLE). These proposed algorithms will use the Echo Return Loss Enhancement (ERLE) to control the operation of filter's coefficient length variation. In addition, the time-varying step size is used.The total number of coefficients required was reduced by about 18% , 10% , 6%

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Jul 01 2010
Journal Name
International Journal Of Advancements In Computing Technology
Implementation of digital chaotic signal generator based on reconfigurable LFSRs for multiple access communications
...Show More Authors

This paper describes the digital chaotic signal with ship map design. The robust digital implementation eliminates the variation tolerance and electronics noise problems common in analog chaotic circuits. Generation of good non-repeatable and nonpredictable random sequences is of increasing importance in security applications. The use of 1-D chaotic signal to mask useful information and to mask it unrecognizable by the receiver is a field of research in full expansion. The piece-wise 1-D map such as ship map is used for this paper. The main advantages of chaos are the increased security of the transmission and ease of generation of a great number of distinct sequences. As consequence, the number of users in the systems can be increased. Rec

... Show More
Scopus (3)
Scopus