Preferred Language
Articles
/
FhhIEJUBVTCNdQwCzyWr
Enhanced EEG Signal Classification Using Machine Learning and Optimization Algorithm
...Show More Authors

This paper proposes a better solution for EEG-based brain language signals classification, it is using machine learning and optimization algorithms. This project aims to replace the brain signal classification for language processing tasks by achieving the higher accuracy and speed process. Features extraction is performed using a modified Discrete Wavelet Transform (DWT) in this study which increases the capability of capturing signal characteristics appropriately by decomposing EEG signals into significant frequency components. A Gray Wolf Optimization (GWO) algorithm method is applied to improve the results and select the optimal features which achieves more accurate results by selecting impactful features with maximum relevance while minimizing redundancy. This optimization process improves the performance of the classification model in general. In case of classification, the Support Vector Machine (SVM) and Neural Network (NN) hybrid model is presented. This combines an SVM classifier's capacity to manage functions in high dimensional space, as well as a neural network capacity to learn non-linearly with its feature (pattern learning). The model was trained and tested on an EEG dataset and performed a classification accuracy of 97%, indicating the robustness and efficacy of our method. The results indicate that this improved classifier is able to be used in brain–computer interface systems and neurologic evaluations. The combination of machine learning and optimization techniques has established this paradigm as a highly effective way to pursue further research in EEG signal processing for brain language recognition.

Scopus Crossref
View Publication
Publication Date
Fri Jul 01 2022
Journal Name
International Journal Of Nonlinear Analysis And Applications
Survey on distributed denial of service attack detection using deep learning: A review
...Show More Authors

Distributed Denial of Service (DDoS) attacks on Web-based services have grown in both number and sophistication with the rise of advanced wireless technology and modern computing paradigms. Detecting these attacks in the sea of communication packets is very important. There were a lot of DDoS attacks that were directed at the network and transport layers at first. During the past few years, attackers have changed their strategies to try to get into the application layer. The application layer attacks could be more harmful and stealthier because the attack traffic and the normal traffic flows cannot be told apart. Distributed attacks are hard to fight because they can affect real computing resources as well as network bandwidth. DDoS attacks

... Show More
View Publication
Publication Date
Thu Oct 01 2020
Journal Name
Ieee Transactions On Artificial Intelligence
Recursive Multi-Signal Temporal Fusions With Attention Mechanism Improves EMG Feature Extraction
...Show More Authors

View Publication
Scopus (38)
Crossref (35)
Scopus Crossref
Publication Date
Tue Jan 01 2013
Journal Name
Brain Research Bulletin
A note on the probability distribution function of the surface electromyogram signal
...Show More Authors

View Publication
Scopus (86)
Crossref (91)
Scopus Clarivate Crossref
Publication Date
Tue Jul 01 2014
Journal Name
International Journal Of Artificial Intelligence And Mechatronics
Building a Three-Axis CNC Milling Machine Control System
...Show More Authors

CNC machines are widely used in production fields since they produce similar parts in a minimum time, at higher speed and with possibly minimum error. A control system is designed, implemented and tested to control the operation of a laboratory CNC milling machine having three axes that are moved by using a stepper motor attached to each axis. The control system includes two parts, hardware part and software part, the hardware part used a PC (works as controller) connected to the CNC machine through its parallel port by using designed interface circuit. The software part includes the algorithms needed to control the CNC. The sample needs to be machined is drawn by using one of the drawing software like AUTOCAD or 3D MAX and is saved in a we

... Show More
View Publication Preview PDF
Publication Date
Tue Aug 10 2021
Journal Name
Design Engineering
Lossy Image Compression Using Hybrid Deep Learning Autoencoder Based On kmean Clusteri
...Show More Authors

Image compression plays an important role in reducing the size and storage of data while increasing the speed of its transmission through the Internet significantly. Image compression is an important research topic for several decades and recently, with the great successes achieved by deep learning in many areas of image processing, especially image compression, and its use is increasing Gradually in the field of image compression. The deep learning neural network has also achieved great success in the field of processing and compressing various images of different sizes. In this paper, we present a structure for image compression based on the use of a Convolutional AutoEncoder (CAE) for deep learning, inspired by the diversity of human eye

... Show More
Publication Date
Mon Jul 01 2024
Journal Name
Journal Of Engineering
Design and Implementation of a Microstrip Six-Port Reflectometer (SPR) with Enhanced Bandwidth
...Show More Authors

A compact microstrip six-port reflectometer (SPR) with extended bandwidth is proposed in this paper. The design is based on using 16-dB multi-section coupled line directional couplers and a multi-section 3-dB Wilkinson power divider operating from 1 to 6 GHz. The proposed SPR employs only two calibration standards: a matched load and an open load. As compared to other dielectric substrates, fabricating the proposed SPR involves using a low-cost (FR4) substrate. A novel algorithm is also proposed to estimate the complex reflection coefficient over the frequency ranges at which the standard performance of the circuit components is not fully satisfied. The new algorithm is based on the circles’ intersection points, which have been de

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Fri Nov 21 2025
Journal Name
Journal Of Advances In Information Technology
Towards Accurate SDG Research Categorization: A Hybrid Deep Learning Approach Using Scopus Metadata
...Show More Authors

The complexity and variety of language included in policy and academic documents make the automatic classification of research papers based on the United Nations Sustainable Development Goals (SDGs) somewhat difficult. Using both pre-trained and contextual word embeddings to increase semantic understanding, this study presents a complete deep learning pipeline combining Bidirectional Long Short-Term Memory (BiLSTM) and Convolutional Neural Network (CNN) architectures which aims primarily to improve the comprehensibility and accuracy of SDG text classification, thereby enabling more effective policy monitoring and research evaluation. Successful document representation via Global Vector (GloVe), Bidirectional Encoder Representations from Tra

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Wed Jan 01 2025
Journal Name
Iv. International Rimar Congress Of Pure, Applied Sciences
A New Intrusion Detection Approach Based on RNA Encoding and K-Means Clustering Algorithm Using KDD-Cup99 Dataset
...Show More Authors

Intrusion detection systems (IDS) are useful tools that help security administrators in the developing task to secure the network and alert in any possible harmful event. IDS can be classified either as misuse or anomaly, depending on the detection methodology. Where Misuse IDS can recognize the known attack based on their signatures, the main disadvantage of these systems is that they cannot detect new attacks. At the same time, the anomaly IDS depends on normal behaviour, where the main advantage of this system is its ability to discover new attacks. On the other hand, the main drawback of anomaly IDS is high false alarm rate results. Therefore, a hybrid IDS is a combination of misuse and anomaly and acts as a solution to overcome the dis

... Show More
Preview PDF
Publication Date
Tue Jan 01 2019
Journal Name
Energy Procedia
Enhanced efficiency of CdTe Photovoltaic by thermal evaporation Vacuum
...Show More Authors

Crossref (22)
Crossref
Publication Date
Tue Mar 28 2017
Journal Name
Iraqi Journal Of Pharmaceutical Sciences ( P-issn 1683 - 3597 E-issn 2521 - 3512)
Guggulusome - A Novel Vesicular Carriers for Enhanced Transdermal Delivery
...Show More Authors

The present work describes guggul as a novel carrier for some anti-inflammatory drugs. Guggulusomes containing different concentration of guggul with aceclofenac were prepared by sonication method and characterized for vesicle shape, size, size-distribution, pH, viscosity, spread ability, homogeneity, and accelerated stability in-vitro drug permeation through mouse skin. The vesicles exhibited an entrapment efficiency of 93.2 ± 12%, vesicle size of 0.769 ± 3μm and a zeta potential of - 6.21mV. In vitro drug release was analyzed using Franz’s diffusion cells. The cumulative release of the guggulusomes gel (G2) was 75.8% in 18 hrs, which is greater than that all the gel formulation. The stability profile of prepare

... Show More
View Publication Preview PDF
Crossref (2)
Crossref