This paper proposes a better solution for EEG-based brain language signals classification, it is using machine learning and optimization algorithms. This project aims to replace the brain signal classification for language processing tasks by achieving the higher accuracy and speed process. Features extraction is performed using a modified Discrete Wavelet Transform (DWT) in this study which increases the capability of capturing signal characteristics appropriately by decomposing EEG signals into significant frequency components. A Gray Wolf Optimization (GWO) algorithm method is applied to improve the results and select the optimal features which achieves more accurate results by selecting impactful features with maximum relevance while minimizing redundancy. This optimization process improves the performance of the classification model in general. In case of classification, the Support Vector Machine (SVM) and Neural Network (NN) hybrid model is presented. This combines an SVM classifier's capacity to manage functions in high dimensional space, as well as a neural network capacity to learn non-linearly with its feature (pattern learning). The model was trained and tested on an EEG dataset and performed a classification accuracy of 97%, indicating the robustness and efficacy of our method. The results indicate that this improved classifier is able to be used in brain–computer interface systems and neurologic evaluations. The combination of machine learning and optimization techniques has established this paradigm as a highly effective way to pursue further research in EEG signal processing for brain language recognition.
<p>Analyzing X-rays and computed tomography-scan (CT scan) images using a convolutional neural network (CNN) method is a very interesting subject, especially after coronavirus disease 2019 (COVID-19) pandemic. In this paper, a study is made on 423 patients’ CT scan images from Al-Kadhimiya (Madenat Al Emammain Al Kadhmain) hospital in Baghdad, Iraq, to diagnose if they have COVID or not using CNN. The total data being tested has 15000 CT-scan images chosen in a specific way to give a correct diagnosis. The activation function used in this research is the wavelet function, which differs from CNN activation functions. The convolutional wavelet neural network (CWNN) model proposed in this paper is compared with regular convol
... Show MoreThe field of Optical Character Recognition (OCR) is the process of converting an image of text into a machine-readable text format. The classification of Arabic manuscripts in general is part of this field. In recent years, the processing of Arabian image databases by deep learning architectures has experienced a remarkable development. However, this remains insufficient to satisfy the enormous wealth of Arabic manuscripts. In this research, a deep learning architecture is used to address the issue of classifying Arabic letters written by hand. The method based on a convolutional neural network (CNN) architecture as a self-extractor and classifier. Considering the nature of the dataset images (binary images), the contours of the alphabet
... Show MoreCare and attention to the structure in the sixties of the last century replaced the mark, and if the structure of Ms. pampered in research and studies, it has become the mark is also a spoiled lady .. But the relationship between the structure and the mark was not a break and break, but the relationship of integration, His themes are structural analysis, and these are intellectual themes that can not be surpassed in contemporary research, especially since semiotics have emerged from the linguistic inflection.
We have tried to distinguish between text and speech, which is a daunting task, as it seems that whenever the difference between them is clear and clear, we come back to wonder whether the text is the same discourse, and is
... Show MoreThe need for quick airborne transportation is critical, especially in emergencies. Drones with suspended payloads might be used to accomplish quick airborne transportation. Due to the environment or the drone's motion, the slung load may oscillate and lead the drone to fall. The altitude and attitude controls are the backbones of the drone's stability, and they must be adequately designed. Because of their symmetrical and simple structure, quadrotor helicopters are one of the most popular drone classes. In this work, a genetic algorithm with two weighted terms fitness function is used to adjust a Proportional-Integral-Derivative (PID) controller to compensate for the altitude and attitude controllers in a quadrotor drone
... Show More