Due to the large population of motorway users in the country of Iraq, various approaches have been adopted to manage queues such as implementation of traffic lights, avoidance of illegal parking, amongst others. However, defaulters are recorded daily, hence the need to develop a mean of identifying these defaulters and bring them to book. This article discusses the development of an approach of recognizing Iraqi licence plates such that defaulters of queue management systems are identified. Multiple agencies worldwide have quickly and widely adopted the recognition of a vehicle license plate technology to expand their ability in investigative and security matters. License plate helps detect the vehicle's information automatically rather than a long time consuming manually gathering for the information. In this article, transfer learning is employed to train two distinct YOLOv8 models for enhanced automatic number plate recognition (ANPR). This approach leverages the strengths of YOLOv8 in handling complex patterns and variations in license plate designs, showcasing significant promise for real-world applications in vehicle identification and law enforcement.
An adaptive nonlinear neural controller to reduce the nonlinear flutter in 2-D wing is proposed in the paper. The nonlinearities in the system come from the quasi steady aerodynamic model and torsional spring in pitch direction. Time domain simulations are used to examine the dynamic aero elastic instabilities of the system (e.g. the onset of flutter and limit cycle oscillation, LCO). The structure of the controller consists of two models :the modified Elman neural network (MENN) and the feed forward multi-layer Perceptron (MLP). The MENN model is trained with off-line and on-line stages to guarantee that the outputs of the model accurately represent the plunge and pitch motion of the wing and this neural model acts as the identifier. Th
... Show MoreFinding the shortest route in wireless mesh networks is an important aspect. Many techniques are used to solve this problem like dynamic programming, evolutionary algorithms, weighted-sum techniques, and others. In this paper, we use dynamic programming techniques to find the shortest path in wireless mesh networks due to their generality, reduction of complexity and facilitation of numerical computation, simplicity in incorporating constraints, and their onformity to the stochastic nature of some problems. The routing problem is a multi-objective optimization problem with some constraints such as path capacity and end-to-end delay. Single-constraint routing problems and solutions using Dijkstra, Bellman-Ford, and Floyd-Warshall algorith
... Show MoreMedulloblastomas and ependymomas are the most common malignant brain tumors in children. However genetic abnormalities associated with their development and prognosis remain unclear. Recently two gene fusions, KIAA1549–BRAF and SRGAP3–RAF1 have been detected in a number of brain tumours. We report here our development and validation of RT-RQPCR assays to detect various isoforms of these two fusion genes in formalin fixed paraffin embedded (FFPE) tissues of medulloblastoma and ependymoma. We examined these fusion genes in 44 paediatric brain tumours, 33 medulloblastomas and 11 ependymomas. We detected both fusion transcripts in 8/33, 5/33 SRGAP3 ex10/RAF1 ex10, and 3/33 KIAA1549 ex16/BRAF ex9, meduloblastomas but none in the 11 ep
... Show MoreThe Internet of Things (IoT) has significantly transformed modern systems through extensive connectivity but has also concurrently introduced considerable cybersecurity risks. Traditional rule-based methods are becoming increasingly insufficient in the face of evolving cyber threats. This study proposes an enhanced methodology utilizing a hybrid machine-learning framework for IoT cyber-attack detection. The framework integrates a Grey Wolf Optimizer (GWO) for optimal feature selection, a customized synthetic minority oversampling technique (SMOTE) for data balancing, and a systematic approach to hyperparameter tuning of ensemble algorithms: Random Forest (RF), XGBoost, and CatBoost. Evaluations on the RT-IoT2022 dataset demonstrat
... Show MoreMalaria is a curative disease, with therapeutics available for patients, such as drugs that can prevent future malaria infections in countries vulnerable to malaria. Though, there is no effective malaria vaccine until now, although it is an interesting research area in medicine. Local descriptors of blood smear image are exploited in this paper to solve parasitized malaria infection detection problem. Swarm intelligence is used to separate the red blood cells from the background of the blood slide image in adaptive manner. After that, the effective corner points are detected and localized using Harris corner detection method. Two types of local descriptors are generated from the local regions of the effective corners which are Gabor based f
... Show MoreBackground: Sprite coding is a very effective technique for clarifying the background video object. The sprite generation is an open issue because of the foreground objects which prevent the precision of camera motion estimation and blurs the created sprite. Objective: In this paper, a quick and basic static method for sprite area detection in video data is presented. Two statistical methods are applied; the mean and standard deviation of every pixel (over all group of video frame) to determine whether the pixel is a piece of the selected static sprite range or not. A binary map array is built for demonstrating the allocated sprite (as 1) while the non-sprite (as 0) pixels valued. Likewise, holes and gaps filling strategy was utilized to re
... Show More