Crime is a threat to any nation’s security administration and jurisdiction. Therefore, crime analysis becomes increasingly important because it assigns the time and place based on the collected spatial and temporal data. However, old techniques, such as paperwork, investigative judges, and statistical analysis, are not efficient enough to predict the accurate time and location where the crime had taken place. But when machine learning and data mining methods were deployed in crime analysis, crime analysis and predication accuracy increased dramatically. In this study, various types of criminal analysis and prediction using several machine learning and data mining techniques, based o
Sweet pepper (Capsicum annuum L.) is an economically important vegetable crop. Wilt disease caused by Fusarium oxysporum f. sp. capsici is a specific pathogen that affects the pepper. Four isolates of F. oxysporum f. sp. capsici Fo3, Fo6, Fo7 and Fo8 were obtained from diseased pepper plants that were collected from different pepper fields in Baghdad. Fo6 isolate that has high pathogenicity to pepper seeds, Trichoderma harzianum (Th) was tested in vitro against F. oxysporum f. sp. capsici showed a high inhibition rate for the isolate Fo6, the concentration of chelated iron Fe-EDDHA 0.5% reduced the radial growth of Fo6 whi
... Show MoreSeveral previous investigations and studies utilized silica fume (SF) or (micro silica) particles as supplementary cementitious material added as a substitute to cement-based mortars and their effect on the overall properties, especially on physical properties, strength properties, and mechanical properties. This study investigated the impact of the inclusion of silica fume (SF) particles on the residual compressive strengths and microstructure properties of cement-based mortars exposed to severe conditions of elevated temperatures. The prepared specimens were tested and subjected to 25, 250, 450, 600, and 900 °C. Their residual compressive strengths and microstructure were evaluated and compared with control samples (C
... Show MoreDisease diagnosis with computer-aided methods has been extensively studied and applied in diagnosing and monitoring of several chronic diseases. Early detection and risk assessment of breast diseases based on clinical data is helpful for doctors to make early diagnosis and monitor the disease progression. The purpose of this study is to exploit the Convolutional Neural Network (CNN) in discriminating breast MRI scans into pathological and healthy. In this study, a fully automated and efficient deep features extraction algorithm that exploits the spatial information obtained from both T2W-TSE and STIR MRI sequences to discriminate between pathological and healthy breast MRI scans. The breast MRI scans are preprocessed prior to the feature
... Show MoreRA Ali, LK Abood, Int J Sci Res, 2017 - Cited by 2