The covid-19 global pandemic has influenced the day-to-day lives of people across the world. One consequence of this has been significant distortion to the subjective speed at which people feel like time is passing. To date, temporal distortions during covid-19 have mainly been studied in Europe. The current study therefore sought to explore experiences of the passage of time in Iraq. An online questionnaire was used to explore the passage of time during the day, week and the 11 months since the first period of covid-19 restrictions were imposed in Iraq. The questionnaire also measured affective and demographic factors, and task-load. The results showed that distortions to the passage of time were widespread in Iraq. Participants co
... Show MoreThe nuclear level density parameter in non Equi-Spacing Model (NON-ESM), Equi-Spacing Model (ESM) and the Backshifted Energy Dependent Fermi Gas model (BSEDFG) was determined for 106 nuclei; the results are tabulated and compared with the experimental works. It was found that there are no recognizable differences between our results and the experimental -values. The calculated level density parameters have been used in computing the state density as a function of the excitation energies for 58Fe and 246Cm nuclei. The results are in a good agreement with the experimental results from earlier published work.
Test anxiety for intermediate level The current study aims to measure the test anxiety of research’s sample and to identify the statistical differences of test anxiety, considering two variables gender and students classes level (first and third intermediate class). To do this, a stratified random sampling of (300) student from first and third intermediate classes had selected from both the karkh and Rusafa sides of Baghdad province for the academic year 2015-2016. The author tested the whole sample by using the test anxiety scale that had tested for its validity and reliability. The results revealed that the research’s sample as a whole was suffering from test anxiety, there were a statistical differences between male and female tha
... Show MoreMaterials with external dimensions of one or more nanometers are referred to as nanomaterials. These structures result from a number of manufacturing processes. They are used in many industries, including pharmaceuticals, which is the most significant one. Numerous variables, including size, shape, surface morphology, crystallinity, solubility, etc., affect physical properties. While new physical and chemical processes are being created constantly, the biological method is the ideal strategy for synthesizing nanoparticles since it is straightforward, safe, and economical. Different kinds of nanoparticles can be metabolically synthesized by a wide variety of biological sources, including plants, bacteria, fungi, and yeast. There are
... Show MoreGeneral Background: Deep image matting is a fundamental task in computer vision, enabling precise foreground extraction from complex backgrounds, with applications in augmented reality, computer graphics, and video processing. Specific Background: Despite advancements in deep learning-based methods, preserving fine details such as hair and transparency remains a challenge. Knowledge Gap: Existing approaches struggle with accuracy and efficiency, necessitating novel techniques to enhance matting precision. Aims: This study integrates deep learning with fusion techniques to improve alpha matte estimation, proposing a lightweight U-Net model incorporating color-space fusion and preprocessing. Results: Experiments using the AdobeComposition-1k
... Show MoreCryptocurrency became an important participant on the financial market as it attracts large investments and interests. With this vibrant setting, the proposed cryptocurrency price prediction tool stands as a pivotal element providing direction to both enthusiasts and investors in a market that presents itself grounded on numerous complexities of digital currency. Employing feature selection enchantment and dynamic trio of ARIMA, LSTM, Linear Regression techniques the tool creates a mosaic for users to analyze data using artificial intelligence towards forecasts in real-time crypto universe. While users navigate the algorithmic labyrinth, they are offered a vast and glittering selection of high-quality cryptocurrencies to select. The
... Show MoreBackground: DVT is a very common problem with a very serious complications like pulmonary embolism (PE) which carries a high mortality,and many other chronic and annoying complications ( like chronic DVT, post-phlebitic syndrome, and chronic venous insufficiency) ,and it has many risk factors that affect its course, severity ,and response to treatment. Objectives: Most of those risk factors are modifiable, and a better understanding of the relationships between them can be beneficial for better assessment for liable pfatients , prevention of disease, and the effectiveness of our treatment modalities. Male to female ratio was nearly equal , so we didn’t discuss the gender among other risk factors. Type of the study:A cross- secti
The convolutional neural networks (CNN) are among the most utilized neural networks in various applications, including deep learning. In recent years, the continuing extension of CNN into increasingly complicated domains has made its training process more difficult. Thus, researchers adopted optimized hybrid algorithms to address this problem. In this work, a novel chaotic black hole algorithm-based approach was created for the training of CNN to optimize its performance via avoidance of entrapment in the local minima. The logistic chaotic map was used to initialize the population instead of using the uniform distribution. The proposed training algorithm was developed based on a specific benchmark problem for optical character recog
... Show More