The convolutional neural networks (CNN) are among the most utilized neural networks in various applications, including deep learning. In recent years, the continuing extension of CNN into increasingly complicated domains has made its training process more difficult. Thus, researchers adopted optimized hybrid algorithms to address this problem. In this work, a novel chaotic black hole algorithm-based approach was created for the training of CNN to optimize its performance via avoidance of entrapment in the local minima. The logistic chaotic map was used to initialize the population instead of using the uniform distribution. The proposed training algorithm was developed based on a specific benchmark problem for optical character recog
... Show MoreCryptocurrency became an important participant on the financial market as it attracts large investments and interests. With this vibrant setting, the proposed cryptocurrency price prediction tool stands as a pivotal element providing direction to both enthusiasts and investors in a market that presents itself grounded on numerous complexities of digital currency. Employing feature selection enchantment and dynamic trio of ARIMA, LSTM, Linear Regression techniques the tool creates a mosaic for users to analyze data using artificial intelligence towards forecasts in real-time crypto universe. While users navigate the algorithmic labyrinth, they are offered a vast and glittering selection of high-quality cryptocurrencies to select. The
... Show MoreGeneral Background: Deep image matting is a fundamental task in computer vision, enabling precise foreground extraction from complex backgrounds, with applications in augmented reality, computer graphics, and video processing. Specific Background: Despite advancements in deep learning-based methods, preserving fine details such as hair and transparency remains a challenge. Knowledge Gap: Existing approaches struggle with accuracy and efficiency, necessitating novel techniques to enhance matting precision. Aims: This study integrates deep learning with fusion techniques to improve alpha matte estimation, proposing a lightweight U-Net model incorporating color-space fusion and preprocessing. Results: Experiments using the AdobeComposition-1k
... Show MoreBackground: DVT is a very common problem with a very serious complications like pulmonary embolism (PE) which carries a high mortality,and many other chronic and annoying complications ( like chronic DVT, post-phlebitic syndrome, and chronic venous insufficiency) ,and it has many risk factors that affect its course, severity ,and response to treatment. Objectives: Most of those risk factors are modifiable, and a better understanding of the relationships between them can be beneficial for better assessment for liable pfatients , prevention of disease, and the effectiveness of our treatment modalities. Male to female ratio was nearly equal , so we didn’t discuss the gender among other risk factors. Type of the study:A cross- secti
Its well known that understanding human facial expressions is a key component in understanding emotions and finds broad applications in the field of human-computer interaction (HCI), has been a long-standing issue. In this paper, we shed light on the utilisation of a deep convolutional neural network (DCNN) for facial emotion recognition from videos using the TensorFlow machine-learning library from Google. This work was applied to ten emotions from the Amsterdam Dynamic Facial Expression Set-Bath Intensity Variations (ADFES-BIV) dataset and tested using two datasets.
Background: In human life, malnutrition may adversely affect various aspects of growth at different stages of life. Teeth are particularly sensitive to malnutrition. Malnutrition may affect odontometeric measurement involving arch width and length of primary dentition. The aim of this study is to estimate the effect of nutrition on arch width and length dimension measurements among children aged 5 years old. Material and methods: This study was conducted among malnourished group in comparison to well-nourished group matching with age and gender. The present study included 158 children aged 5 years (78 malnourished and 80 well-nourished). The assessment of nutritional status was done by using three nutritional indicators, namely Height-for-a
... Show MoreThe aim of this study was to study TV advertising and consumer behavior in children and to meet the needs of children. The study included 100 children from Baghdad who were randomly selected from different regions ranging in age from 9-12 years of both males and females. The current research was based on the interview and the completion of special forms prepared for this purpose. This age group was selected for the rare studies conducted on television advertising and limited to different sectors. Data on age and sex were documented, as the results of this study proved The afternoon period was the preferred period for watching the TV show in males, where it was 22%, while the morning period was the female favorite, and it was 23%. The ind
... Show MoreBackground: There is a pronounced controversy regarding the dental and mental consequences of thumb sucking habit, which is a familiar nonnutritive pattern of sucking. Commonly, this behavior is harmless, yet those who sustain this pattern may have dental alterations and emotional difficulties. Children’s intelligence level influences their capabilities to judge, evaluate and handle priorities and/or problems profoundly and precisely. Thumb sucking habit might be a manner of liberating the psychological tenseness among several children. Objective: The purpose of this study is to assess the prevalence of thumb sucking habit and its relation to the eruption of permanent teeth and IQ among children aged 6-7 years old. Subjects and methods: I
... Show More