Preferred Language
Articles
/
FhbCtIcBVTCNdQwCO11W
Numerical solution of two-dimensional mixed problems with variable coefficients by the boundary-domain integral and integro-differential equation methods

Crossref
View Publication
Publication Date
Sat Mar 04 2023
Journal Name
Baghdad Science Journal
Approximate Solution of Sub diffusion Bio heat Transfer Equation

In this paper, author’s study sub diffusion bio heat transfer model and developed explicit finite difference scheme for time fractional sub diffusion bio heat transfer equation by using caputo fabrizio fractional derivative. Also discussed conditional stability and convergence of developed scheme. Furthermore numerical solution of time fractional sub diffusion bio heat transfer equation is obtained and it is represented graphically by Python.

Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Tue Dec 01 2020
Journal Name
Baghdad Science Journal
Approximate Numerical Solutions for Linear Volterra Integral Equations Using Touchard Polynomials

In this paper, Touchard polynomials (TPs) are presented for solving Linear Volterra integral equations of the second kind (LVIEs-2k) and the first kind (LVIEs-1k) besides, the singular kernel type of this equation. Illustrative examples show the efficiency of the presented method, and the approximate numerical (AN) solutions are compared with one another method in some examples. All calculations and graphs are performed by program MATLAB2018b.

Scopus (4)
Crossref (1)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Sun Jan 30 2022
Journal Name
Iraqi Journal Of Science
Fixed Point Theory for Study the Controllability of Boundary Control Problems in Reflexive Banach Spaces

      In this paper, we extend the work of our proplem in uniformly convex Banach spaces using Kirk fixed point theorem. Thus the existence and sufficient conditions for the controllability to general formulation of nonlinear boundary control problems in reflexive Banach spaces are introduced. The results are obtained by using fixed point theorem that deals with nonexpanisive mapping defined on a set has normal structure and strongly continuous semigroup theory. An application is given to illustrate the  importance of the results.

Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Thu Apr 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
A Novel Algorithm to Find the Best Solution for Pentagonal Fuzzy Numbers with Linear Programming Problems

    Fuzzy numbers are used in various fields such as fuzzy process methods, decision control theory, problems involving decision making, and systematic reasoning. Fuzzy systems, including fuzzy set theory. In this paper, pentagonal fuzzy variables (PFV) are used to formulate linear programming problems (LPP). Here, we will concentrate on an approach to addressing these issues that uses the simplex technique (SM). Linear programming problems (LPP) and linear programming problems (LPP) with pentagonal fuzzy numbers (PFN) are the two basic categories into which we divide these issues. The focus of this paper is to find the optimal solution (OS) for LPP with PFN on the objective function (OF) and right-hand side. New ranking f

... Show More
Crossref
View Publication Preview PDF
Publication Date
Fri Jan 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Using a New General Complex Integral Transform for Solving Population Growth and Decay Problems

The Population growth and decay issues are one of the most pressing issues in many sectors of study. These issues can be found in physics, chemistry, social science, biology, and zoology, among other subjects.

We introduced the solution for these problems in this paper by using the SEJI (Sadiq- Emad- Jinan) integral transform, which has some mathematical properties that we use in our solutions. We also presented the SEJI transform for some functions, followed by the inverse of the SEJI integral transform for these functions. After that, we demonstrate how to use the SEJI transform to tackle population growth and decay problems by presenting two applications that demonstrate how to use this transform to obtain solutions.

Fin

... Show More
Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Thu Nov 01 2018
Journal Name
Computers & Fluids
Scopus (17)
Crossref (17)
Scopus Clarivate Crossref
View Publication
Publication Date
Fri Jul 01 2016
Journal Name
Journal Of Economics And Administrative Sciences
Comparison some of methods wavelet estimation for non parametric regression function with missing response variable at random

Abstract

 The problem of missing data represents a major obstacle before researchers in the process of data analysis in different fields since , this problem is a recurrent one in all fields of study including social , medical , astronomical and clinical experiments .

The presence of such a problem within the data to be studied may influence negatively on the analysis and it may lead to misleading conclusions , together with the fact that these conclusions that result from a great bias caused by that problem in spite of the efficiency of wavelet methods but they are also affected by the missing of data , in addition to the impact of the problem of miss of accuracy estimation

... Show More
Crossref
View Publication Preview PDF
Publication Date
Mon Mar 09 2015
Journal Name
Monthly Notices Of The Royal Astronomical Society
Crossref (7)
Crossref
View Publication
Publication Date
Mon Jan 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Continuous Classical Optimal Control Problems for Triple Elliptic Partial Differential Equations

In this paper the Galerkin method is used to prove the existence and uniqueness theorem for the solution of the state vector of the triple linear elliptic partial differential equations for fixed continuous classical optimal control vector. Also, the existence theorem of a continuous classical optimal control vector related with the triple linear equations of elliptic types is proved. The existence of a unique solution for the triple adjoint equations related with the considered triple of the state equations is studied. The Fréchet derivative of the cost function is derived. Finally the theorem of necessary conditions for optimality of the considered problem is proved.

Crossref (2)
Crossref
View Publication Preview PDF
Publication Date
Mon May 11 2020
Journal Name
Baghdad Science Journal
On the Growth of Solutions of Second Order Linear Complex Differential Equations whose Coefficients Satisfy Certain Conditions

In this paper, we study the growth of solutions of the second order linear complex differential equations  insuring that any nontrivial solutions are of infinite order. It is assumed that the coefficients satisfy the extremal condition for Yang’s inequality and the extremal condition for Denjoy’s conjecture. The other condition is that one of the coefficients itself is a solution of the differential equation .

Scopus Clarivate Crossref
View Publication Preview PDF