In this study, He's parallel numerical algorithm by neural network is applied to type of integration of fractional equations is Abel’s integral equations of the 1st and 2nd kinds. Using a Levenberge – Marquaradt training algorithm as a tool to train the network. To show the efficiency of the method, some type of Abel’s integral equations is solved as numerical examples. Numerical results show that the new method is very efficient problems with high accuracy.
In this research, our aim is to study the optimal control problem (OCP) for triple nonlinear elliptic boundary value problem (TNLEBVP). The Mint-Browder theorem is used to prove the existence and uniqueness theorem of the solution of the state vector for fixed control vector. The existence theorem for the triple continuous classical optimal control vector (TCCOCV) related to the TNLEBVP is also proved. After studying the existence of a unique solution for the triple adjoint equations (TAEqs) related to the triple of the state equations, we derive The Fréchet derivative (FD) of the cost function using Hamiltonian function. Then the theorems of necessity conditions and the sufficient condition for optimality of
... Show MoreWe study one example of hyperbolic problems it's Initial-boundary string problem with two ends. In fact we look for the solution in weak sense in some sobolev spaces. Also we use energy technic with Galerkin's method to study some properties for our problem as existence and uniqueness
The mixed-spin ferrimagnetic Ising system consists of two-dimensional sublattices A and B with spin values and respectively .By used the mean-field approximation MFA of Ising model to find magnetism( ).In order to determined the best stabile magnetism , Gibbs free energy employ a variational method based on the Bogoliubov inequality .The ground-state (Phase diagram) structure of our system can easily be determined at , we find six phases with different spins values depend on the effect of a single-ion anisotropies .these lead to determined the second , first orders transition ,and the tricritical points as well as the compensation phenomenon .
Some modified techniques are used in this article in order to have approximate solutions for systems of Volterra integro-differential equations. The suggested techniques are the so called Laplace-Adomian decomposition method and Laplace iterative method. The proposed methods are robust and accurate as can be seen from the given illustrative examples and from the comparison that are made with the exact solution.
Chromium oxide nanoparticles were synthesized using cauliflower extract by two methods: simple chemical method and the sol-gel method. These technologies are new, environmentally friendly and cheap. Cauliflower contains plant materials and biomolecules (chromium, phenols, alkalis, vitamins, amino acids, quinones, etc. (that convert chromium chloride hexahydrate (CrCl3.6H2O) into chromium nanoparticles. The plant extracts also act as diluents, stabilizers and anti-caking agents. X-ray diffraction (XRD) analysis showed that the size of the crystals decreased from (36.1 to 57.8) nm using the simple chemical method to (13.31 to 20.68) nm of Cr2O3 using sol-gel.
... Show MoreA fast laser texturing technique has been utilized to produce micro/nano surface textures in Silicon by means of UV femtosecond laser. We have prepared good absorber surface for photovoltaic cells. The textured Silicon surface absorbs the incident light greater than the non-textured surface. The results show a photovoltaic current increase about 21.3% for photovoltaic cell with two-dimensional pattern as compared to the same cell without texturing.
In this work, a numerical study is performed to predict the solution of two – dimensional, steady and laminar mixed convection flow over a square cylinder placed symmetrically in a vertical parallel plate. A finite difference method is employed to solve the governing differential equations, continuity, momentum, and energy equation balances. The solution is obtained for stream function, vorticity and temperature as dependent variables by iterative technique known as successive over relaxation. The flow and temperature patterns are obtained for Reynolds number and Grashof number at (Re= -50,50,100,-100) (positive or negative value refers to aidding or opposing buoyancy , +1 assisting flow, -1 opposing flow) and (102 to 105) , respective
... Show More