The cost‐effective dual functions zeolite‐carbon composite (DFZCC) was prepared using an eco‐friendly substrate prepared from bio‐waste and an organic adhesive at intermediate conditions. The green synthesis method used in this study ensures that chemically harmless compounds are used to obtain a homogeneous distribution of zeolite over porous carbon. The greenly prepared dual‐function composite was extensively characterized using Fourier transform infrared, X‐ray diffraction, thermogravimetric analysis, N2 adsorption/desorption isotherms, field emission scanning electron microscope, dispersive analysis by X‐ray, and point of zero charges. DFZCC had a surface area of 248.84 m2/g and a pore volume of 0.141 cm3/g. DFZCC was used in the sorption process of Zn2+ ions from aqueous solutions, and it achieved higher removal (98%) at normal pH of 6.4 and temperature of 40°C. The Langmuir model was the best model for representing equilibrium data with a maximum sorption capacity of 6.711 mg/g. The kinetic studies showed that the pseudo‐second‐order model was the most appropriate model for representing experimental data. The intra‐particle diffusion kinetics demonstrated that the boundary film is the rate‐determining step in the sorption process. The sorption process of Zn2+ ions by DFZCC was spontaneous and endothermic. Moreover, solidification of the spent DFZCC by kaolin successfully reduced the leaching ions to the solution after 12 weeks from exposure to a salty solution.
ABSTRACT:
Microencapsulation is used to modify and retard drug release as well as to overcome the unpleasant effect
(gastrointestinal disturbances) which are associated with repeated and overdose of ibuprofen per day.
So that, a newly developed method of microencapsulation was utilized (a modified organic method) through a
modification of aqueous colloidal polymer dispersion method using ethylcellulose and sodium alginate coating materials to
prepare a sustained release ibuprofen microcapsules.
The effect of core : wall ratio on the percent yield and encapsulation efficiency of prepared microcapsules was low, whereas
, the release of drug from prepared microcapsules was affected by core: wall ratio ,proportion of coa
This study explored the development and qualities of the response of electrochemical properties of enrofloxacin-selective electrodes using precipitation based on producing phosphotungstic, after utilizing a matrix of polyvinyl chloride (PVC) and dibutyl phthalate or dibutyl phosphate as a plasticizer. The resulting membrane sensors were an enrofloxacin-phosphotungstic electrode (sensors 1) and an ENR-DOP-PTA electrode (sensors 2). Linear responses of (ENR-DBPH-PTA) and (ENR-DOP-PTA) within the concentration ranges of 2.1×10-6-10-1 and 3.0×10-6-10-2 mol. L-1, respectively, for both sensors were observed. Slopes of 51.61±0.24 and 39.40± 0.16 mV/decade and pH ranges equal to 2.5-8.5
... Show MoreAdsorption studies were carried out to test the ability of the Iraqi rice bran (Amber type) to adsorb some metals divalent cations (Cd2+, Co2+, Cu2+, Fe2+, Ni2+, Pb2+, and Zn2+) as an alternative tool to remove these pollutants from water. The Concentrations of these ions in water were measured using flame and flamless atomic absorption spectrophotometry techniques. The applicability of the adsorption isotherm on Langmuir or Freundlisch equation were tested and found to be dependent on the type of ions. The results showed different adsorptive behavior and different capacities of the adsorption of the ions on the surface of the bran. The correlation between the amounts adsorbed and different cation parameters including (electronegativity, io
... Show MoreA steel-concrete composite structure (1) is described. The steel-concrete composite structure comprises a steel member (2) having an upper surface (5) and a plurality of shear connector elements (6) upstanding from the upper surface and a concrete slab (4) having upper and lower surfaces (7, 8). The slab is supported on its lower surface by the upper surface of the steel member. The slab comprises a plurality of through holes (9) between the upper and lower surfaces, each through hole tapering towards the lower surface so as to form an inverted frustally-shaped seating surface (10). The concrete slab is configured and positioned with respect to the steel member such that at least one shear connector element projects into each through hole.
... Show MoreAs a result of rapid industrialization and population development, toxic chemicals have been introduced into water systems in recent decades. Because of its excellent efficiency and simple design, the three-dimensional (3D) electro-Fenton method has been used for the treatment of wastewater. The goal of the current study is to explore the efficiency of phenol removal by the 3D electro-Fenton process, which is one of the advanced oxidation processes (AOPs). In the present work, the effect of the addition of granular activated carbon (GAC) particles to the electro-Fenton system as the third electrode would be investigated in the presence of graphite as the anode and nickel foam as the cathode, which is the source of electro-generated hydrogen
... Show MoreAbstract This study investigated the treatment of textile wastewater contaminated with Acid Black 210 dye (AB210) using zinc oxide nanoparticles (ZnO NPs) through adsorption and photocatalytic techniques. ZnO NPs were synthesized using a green synthesis process involving eucalyptus leaves as reducing and capping agents. The synthesized ZnO NPs were characterized using UV-Vis spectroscopy, SEM, EDAX, XRD, BET, Zeta potential, and FTIR techniques. The BET analysis revealed a specific surface area and total pore volume of 26.318 m2/g. SEM images confirmed the crystalline and spherical nature of the particles, with a particle size of 73.4 nm. A photoreactor was designed to facilitate the photo-degradation process. The study investigated the inf
... Show MoreAbstract
The catalytic cracking conversion of Iraqi vacuum gas oil was studied on large and medium pore size (HY, HX, ZSM-22 and ZSM-11) of zeolite catalysts. These catalysts were prepared locally and used in the present work. The catalytic conversion performed on a continuous fixed-bed laboratory reaction unit. Experiments were performed in the temperature range of 673 to 823K, pressure range of 3 to 15bar, and LHSV range of 0.5-3h-1. The results show that the catalytic conversion of vacuum gas oil increases with increase in reaction temperature and decreases with increase in LHSV. The catalytic activity for the proposed catalysts arranged in the following order:
HY>H
... Show MoreObjective: To evaluate two kinds of extraction (aqueous and ethanolic) for coriander using seeds, leaves and stems and
studying their antibacterial activity against nine different microorganisms.
Methodology: Coriander was selected to carry out this study. Seeds, leaves and stems were collected from local markets in
Baghdad then dried in shade for at least 10 days and grinded to fine powder. Aqueous hot extracts for 1hr. at (50
c) and
cold extracts for 24 hrs at (4
c) were performed by using seeds, leaves and stems then studied antibacterial effect against
nine different microorganisms by using well diffusion technique. Cold aqueous extracts of coriander seeds for 48 hrs. and
72 hrs and ethanolic extraction
Zinc Oxide is an indispensable substance in the field of dental treatment. It is used daily and intensively in all governmental and private dental clinics, leading to the disposal of very high concentrations of zinc with waste and eventually in landfill sites as a final destination for solid waste removal. This indicates the urgent need to investigate its behavior upon disposal due to the surrounding conditions. Approximately 4195 g of mixed dental waste samples were collected from (17) healthcare centers in Baghdad Al-Karkh. The leaching behavior of ZnO powder was investigated through batch reactors using makeup dental solid waste samples. The ZnO leaching was tested with 3 conditions; acidic, alkaline, and Ionic Streng
... Show MoreRate of zinc consumption during the cathodic protection of copper pipeline which carries saline water was measured by weight loss technique in the absence and presence of bacteria. Variables studied were solution flow rate, temperature, time and NaCl concentration. It was found that within the present range of variables; the rate of zinc consumption increases with the increase of all operating conditions. The presence of bacteria increases the zinc consumption. Fourth order multi-term model and one-term model were suggested to represent the consumption data. Nonlinear regression analysis was used to estimate the coefficients of these models, while statistical analysis was used to determine the effect of each coefficient. Both models were re
... Show More