Composite steel-concrete sections have a broad benefit through increasing structural strength as well as minimizing the self-loads. All past researches were concerned with pre-installed shear connectors (PRSC) in the manufacturing of composite sections. A new fabrication technique for steel-concrete-steel composite sections were presented in the current study by the post-installation shear connectors (POSC) passed-through an embedded polymerizing vinyl chloride (PVC) pipes. The performance of normal strength concrete prisms with a specified strength of 32 MPa connected to square steel tubes (SST) was investigated. Six specimens were fabricated in both methodologies, PRSC and POSC were experimentally tested by Push-out test. The spacing of the shear connectors was changed for every two specimens fabricated in two different ways in order to obtain a full behavioral view. However, POSC does not have full-bond to concrete prisms, the test revealed a comparable strength of POSC specimens. The test shows a slight increase in the ultimate strength of PRSC specimens by (12.11, 11.19, and 9.45) % than POSC specimens for 100mm, 150mm, and 200mm spaced shear connectors.
Reinforced concrete slabs are one of the most important and complicated elements of a building. For supported edges slabs, if the ratio of long span to short span is equal or less than two then the slab is considered as two-way slab otherwise is consider as one-way slab. Two-way reinforced concrete slabs are common in use in reinforced concrete buildings due to geometrically arrangement of columns suggested by architects who prefer a symmetric distribution of columns in their plans. Elastic theory is usually used for analysis of concrete slabs. However, for several reasons design methods based on elastic principles are limited in their function. Correspondingly, limit state analysis o
Tillage tools are subject to friction and low-stress abrasive wear processes with the potential deterioration of the desired soil quality, loss of mechanical weed efficacy, and downtime for replacing worn tools. Limited experimental methods exist to quantify investigate the effect of wear-resistant coatings on shape parameters of soil-engaging tools. ASTM standard sand/rubber wheel abrasion and pin-on-disk tests are not able to simulate wear characteristics of the complex shape of the tillage tools. Even though the tribology of tillage tools can be realistic from field tests, tillage wear tests under field conditions are expensive and often challenging to generate repeatable engineeri
Background: The purpose of this study was to evaluate the effect of in vitro long-term simulation of oral conditions on the bond strength of PEEK CAD/CAM lingual retainers.
Material and methods: The sample consisted of 12 PEEK CAD/CAM retainers each composed of 2 centrally perforated 3x4mm pads joined by a connector. They were treated by 98% sulfuric acid for 1 minute and then conditioned with Single Bond Universal and bonded to the lingual surface of premolar teeth by 3M Transbond TM System. Half of the retainers were artificially aged using a 30-day water storage and 5000 thermocycling protocol before bond strength testing to compare with the non-aged specimens.
Results: The artificially aged retainers showed a marginally
... Show MoreBackground: This in vitro study compares a self-etch primer (SEP) to an etch-and-rinse (EaR) for bonding sapphire brackets by evaluation of the enamel etch-pattern, shear bond strength, amount of remnant adhesive and enamel surface damage following thermal and fatigue cyclic loading. Material and Methods: Ceramic (sapphire) brackets were bonded to 80 extracted human premolars using two enamel etching protocols: conventional EaR using 37% phosphoric acid (PA) gel (control), and a SEP (Transbond Plus). Each group was subdivided into two subgroups (n=20 teeth) according to the time of bracket debonding: after 24 h water storage or following 5000 thermo-cycles plus 5000 cycles fatigue loading, to determine the shear bond strength (SBS), adhesiv
... Show MoreA hierarchically porous structured zeolite composite was synthesized from NaX zeolite supported on carbonaceous porous material produced by thermal treatment for plum stones which is an agro-waste. This kind of inorganic-organic composite has an improved performance because bulky molecules can easily access the micropores due to the short diffusion path to the active sites which means a higher diffusion rate. The composite was prepared using a green synthesis method, including an eco-friendly polymer to attach NaX zeolite on the carbon surface by phase inversion. The synthesized composite was characterized using X-ray diffraction spectrometry, Fourier transforms infrared spectroscopy, field emission scanning electron microscopy, energy d
... Show MoreThe cost-effective removal of heavy metal ions represents a significant challenge in environmental science. In this study, we developed a straightforward and efficient reusable adsorbent by amalgamating chitosan and vermiculite (forming the CSVT composite), and comprehensively investigated its selective adsorption mechanism. Different techniques, such as Fourier-transform infrared spectroscopy (FTIR), zeta potential analysis, scanning electron microscopy (SEM), X-ray diffraction (XRD), and Brunauer, Emmett, Teller (BET) analysis were employed for this purpose. The prepared CSVT composite exhibited a larger surface area and higher mesoporosity increasing from 1.9 to 17.24 m2/g compared to pristine chitosan. The adsorption capabilities of the
... Show MoreBackground: To evaluate the ISO depth of cure of bulkfill composites and depth of cure which determined by Vickers microhardness test. Materials and Methods: Bulkfill resin composite specimens (n=150) were prepared of three bulkfill composite materials (TetricEvo Ceram, Quixfil and SDR) and light cured by Flash max p3 for 3, 10, 20 seconds and by wood pecker for 10, 20 seconds respectively, a mold was filled with one of the three bulkfill composites and light cured. The specimens removed from the mold and scraped by plastic spatula and the remaining length (absolute length) was measured which represent the ISO depth of cure. After that the specimens were returned into the mold and a microhardness indentation device applied on the specimen
... Show More