The Sonic Scanner is a multifunctional instrument designed to log wells, assess elastic characteristics, and support reservoir characterisation. Furthermore, it facilitates comprehension of rock mechanics, gas detection, and well positioning, while also furnishing data for geomechanical computations and sand management. The present work involved the application of the Sonic Scanner for both basic and advanced processing of oil-well-penetrating carbonate media. The study aimed to characterize the compressional, shear, Stoneley slowness, rock mechanical properties, and Shear anisotropy analysis of the formation. Except for intervals where significant washouts are encountered, the data quality of the Monopole, Dipole, and Stoneley modes is generally good in the open-hole sections. The vertical resolution of reliable Compressional, Shear, and Stoneley values is enhanced by the application of Receiver Multi-shot processing. The analysis of rock mechanical properties, including formation Poisson's ratio, compressional-to-shear velocity ratio, Bulk Modulus, Shear Modulus, and Young's modulus, directly utilised the outputs of compressional and shear slowness data. Acoustic processing and interpretation can make further use of the extracted slowness. Anisotropy analysis of Sonic Scanner data in the well under investigation showed that the formation was mostly isotropic throughout most of the recorded interval. Stress-induced and fracture-induced anisotropy has been detected in a limited number of locations. The maximum horizontal stress extends in a direction ranging from NE 20-80 degrees.
The stratigraphic sequence of Cenomanian-Early Turonian is composed of Ahmadi, Rumaila, and Mishrif formations in the Rifai, Noor and Halfaya Oil Fields within the Mesopotamian Zone of Iraq, which is bounded at top and bottom by unconformity surfaces. The microfacies analysis of the study wells assisted the recognition of five main environments (open marine, basinal, shallow open marine, Rudist biostrome, and lagoon); these microfacies were indicative of a normal lateral change facies from shallow water facies to deeper water and open marine sediments.
Ahmadi Formation (Early Cenomanian) is characterized by open marine sediments during the transgressive conditions, and would be
... Show MoreChanges in mechanical properties of material as a result of service in different conditions can be provided by mechanical testing to assist the estimation of current internal situation of these materials, or the degree of deterioration may exist in furnaces serviced at high temperature and exceed their design life. Because of the rarity works on austenitic stainless steel material type AISI 321H, in this work, ultimate tensile strength, yield strength, elongation, hardness, and absorbed energy by impact are evaluated based on experimental data obtained from mechanical testing. Samples of tubes are extracted from furnace belong to hydrotreaterunit, also samples from un-used tube material are used to make comparisons between these properti
... Show MoreResearchers employ behavior based malware detection models that depend on API tracking and analyzing features to identify suspected PE applications. Those malware behavior models become more efficient than the signature based malware detection systems for detecting unknown malwares. This is because a simple polymorphic or metamorphic malware can defeat signature based detection systems easily. The growing number of computer malwares and the detection of malware have been the concern for security researchers for a large period of time. The use of logic formulae to model the malware behaviors is one of the most encouraging recent developments in malware research, which provides alternatives to classic virus detection methods. To address the l
... Show MoreIn this research, a Co-polymer (Styrene / Allyl-2.3.4.6-tetra-O-acetyl-β-D-glucopyranoside) was synthesized from glucose in four steps using Addition Polymerization according to the radical mechanism using Benzoyl Peroxide (BP) as initiator. Initially, Allyl-2.3.4.6-tetra-O-acetyl-β-D-glucopyranoside monomer was prepared in three steps and the reaction was followed by (HPLC, FT-IR, TLC), in the fourth step the monomer was polymerized with Styrene and the structure was determined by FT-IR and NMR spectroscopy. The reaction conditions (temperature, reaction time, material ratios) were also studied to obtain the highest yield, the relative, specific and reduced viscosity of the prepared polymer was determined, from which the viscosity ave
... Show More