Problem: Cancer is regarded as one of the world's deadliest diseases. Machine learning and its new branch (deep learning) algorithms can facilitate the way of dealing with cancer, especially in the field of cancer prevention and detection. Traditional ways of analyzing cancer data have their limits, and cancer data is growing quickly. This makes it possible for deep learning to move forward with its powerful abilities to analyze and process cancer data. Aims: In the current study, a deep-learning medical support system for the prediction of lung cancer is presented. Methods: The study uses three different deep learning models (EfficientNetB3, ResNet50 and ResNet101) with the transfer learning concept. The three models are trained using a
... Show MoreThe intelligent buildings provided various incentives to get highly inefficient energy-saving caused by the non-stationary building environments. In the presence of such dynamic excitation with higher levels of nonlinearity and coupling effect of temperature and humidity, the HVAC system transitions from underdamped to overdamped indoor conditions. This led to the promotion of highly inefficient energy use and fluctuating indoor thermal comfort. To address these concerns, this study develops a novel framework based on deep clustering of lagrangian trajectories for multi-task learning (DCLTML) and adding a pre-cooling coil in the air handling unit (AHU) to alleviate a coupling issue. The proposed DCLTML exhibits great overall control and is
... Show MoreSensibly highlighting the hidden structures of many real-world networks has attracted growing interest and triggered a vast array of techniques on what is called nowadays community detection (CD) problem. Non-deterministic metaheuristics are proved to competitively transcending the limits of the counterpart deterministic heuristics in solving community detection problem. Despite the increasing interest, most of the existing metaheuristic based community detection (MCD) algorithms reflect one traditional language. Generally, they tend to explicitly project some features of real communities into different definitions of single or multi-objective optimization functions. The design of other operators, however, remains canonical lacking any inte
... Show MoreIn this work, effects of using different evaporative cooling pads (ECPs) on the energetic and exergetic efficiency of a direct evaporative air cooler (DEAC) have been theoretically and experimentally investigated. Three types of ECPs were used, i.e., honeycomb cellulose cooler pad (HCCP), shading-cloth cooler pad (SCCP), and aspen wood wool cooler pad (AWWCP). For SCCP and AWWCP, a 3-cm pad thickness was used, while for the HCCP, three different values of pad thickness were used, i.e., 3, 5, and 7 cm. Tests were carried out using air velocities of 8, 14, and 19 m/s, measured at the DEAC outlet. Engineering equation solver (EES) used for performing the required calculations of the various parameters affecting the thermal performance of the D
... Show MoreThe majority of the environmental outputs from gas refineries are oily wastewater. This research reveals a novel combination of response surface methodology and artificial neural network to optimize and model oil content concentration in the oily wastewater. Response surface methodology based on central composite design shows a highly significant linear model with P value <0.0001 and determination coefficient R2 equal to 0.747, R adjusted was 0.706, and R predicted 0.643. In addition from analysis of variance flow highly effective parameters from other and optimization results verification revealed minimum oily content with 8.5 ± 0.7 ppm when initial oil content 991 ppm, tempe
This work includes preparation of Az, Qz, and Tz derivatives from the reaction of Schiff base (Sb) derivative with anthranilic acid, chloroacetyl chloride, and sodium azide, as well as, the characterization via FT-IR, 1H-NMR, and 13CNMR. The anticorrosion inhibition of these compounds was studied and the measurements of carbon steel (CS) corrosion in sodium chloride solution 3.5% (blank) and inhibitor in solutions were calculated at a temperature range of 293-323 K by the technique of electrochemical polarization. In addition, some thermodynamic and kinetic activation parameters for inhibitor and blank solutions (Ea⋇, ΔH⋇, ΔS⋇, and ΔG⋇) were determined. The results showed high inhibition efficacy for all the prepared compounds,
... Show MoreUnused and expired pharmaceutical drugs are a novel type of organic corrosion inhibitor. They are less expensive, more effective, and less harmful than conventional organic corrosion inhibitors. This study investigated the effects of concentration, adsorption mechanism and thermodynamic parameters of enalapril malate (ENAP) as a corrosion inhibitor for carbon steel in a saline solution (3.5 % NaCl). The polarization method was used to determine the corrosion rate and inhibition efficiency. Field emission scanning electron microscopy (FE-SEM) and atomic force spectroscopy (AFM) were used to investigate the surface morphology and topography of carbon steel after immersion in both uninhibited and inhibited media for 24 h. Fourier transform inf
... Show More