Some Factors determining the virulence of Escherichia coli ( E. coli ) isolates were studied ,of 25 isolates , 17(group A) uropathogenic E. coli ,6 (group B) infected gastrointestinal tract , 2 (group C) infected wound , beside these group we use the standard strain E. coli HB101 as control group. The twenty five isolates were tested for adherence capability to human buccal cavity epithelial cells by in vitro experiment . The results showed that all isolates have different adhesion capability with mean ranging from (14.35±11.39) to (33.80 ± 22.68) bacteria / epithelial cell It was noticed that isolates EU9, ES6, EW17 displayed high adhesive capability with mean value (33.80 ± 22.68), (32.60 ± 21.19), (29.90±22.50) bacteria /epithelial cell respectively, while the isolates EU4 displayed a lowest adhesive capability with mean value of (14.35±11.39) bacteria / epithelial cell. It was also found that there was no significant difference ( P ≥ 0.001) for adhesive capability among EU9, ES6, EW17, but the adhesive capability for these isolates was significantly higher (P ≤ 0.001) compared to standard strain which showed adhesive capability with mean value (0.55± 0.88),thus these isolates were selected for further experiments to study others virulence factors such as ability to agglutination human , rabbit , sheep erythrocytes in mannose – sensitive manner and production of haemolysin , biofilm. The results revealed that all isolates had nearly the same hemagluttination pattern in the absence of D-mannose while the pattern is different in the presence of D- mannose, where the isolates EU9, ES6 show ability to agglutinate human and sheep erythrocytes and so considered as Mannose Resistant Hemagluttination (MRHA) while the isolate EW17 did not show this ability and considered as Mannose Sensitive Hemagluttination ( MSHA). It was also found that all isolates have ability to produce haemolysin and biofilm formation but in different pattern.
Synthesis, Characterization And Biological Evaluation of Schiff Base And Ligand Metal Complexes of Some Drug Substances
In this study, synthesised new ligand: potassium 2,2'-(quinoxaline-2,3- diyl)bis(1-phenylhydrazinecarbodithioate) (L). The ligand synthesised by reacting N1,N2-dip-tolyloxalamide as the starting material with CS2 and KOH to add the CS2 group and then with phenylendiammine to achieve (L). The ligand used in the synthesis of complexes with (CoII, NiII and CdII). The new ligand and its complexes characterised by FT-IR, UV-Vis, 1H, 13C-NMR, Mass spectroscopy, and elemental analysis, in addition to the above techniques were using magnetic moment, atomic absorption, chloride content, and melting point to describe the metal complexes.
The mixed ligand complexes of Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II) with alanine and 8-hydroxyqinoline (Oxine) were synthesized and characterized by FT-IR ,spectra electronic, flam-AAS] along with conductivity measurements , solubility , melting point, magnetic susceptipibility.The synthesized complexes were tested in vitro for antimicrobial activity. The results obtained indicated that some of these complexes are more active than with others.
Cognitive methods play the role of regulator of the human environment for its direct relationship with sensory stimuli and stimuli associated with the organization of information and ideas and their preparation for use in subsequent situations. These methods determine the characteristic or ideal way of individual personality in the differentiation and integration of attitudes or cognitive field to which he is exposed. Therefore, the research aimed at the level of psychological stress and its relation to some personal characteristics that show the personality of the artist or the students of art.
Current research aims to.
- Identifying the extent of psychological stress and its relation to the personal ch
2- amino -5- thiol-1,3,4- thiadiazole (S1) was prepared by cyclic locking of thiosemicarbazide in the presence of anhydrous sodium carbonate and CS2. diazotization of (S1) compound gave diazonium salt (S2) that reacts with different activated aromatic compounds to get the following azo compounds ,2 [(4- aminophenyl) diazenyl ] 1,3,4- thiazdiazole-5- thiol (S3) ,2-[4-amino- 1-naphthyl diazenyl] -1,3,4 – thiazdiazole-5-thiol (S4) , 3-amino-4-[(5- mercapto -1,3,4- thiadiazole -2-yl) diazenyl ] phenol(S5) ,1-[(5-mercapto-1,3,4-thiadiazole-2-yl) diazenyl] -2-naphthol (S6) , 5-{[4-(dimethylamino) phenyl] diazenyl}-1,3,4-thiadiazole-2- thiol(S7) ,5-{[4-(diethylamino) phenyl] diazenyl}-1,3,4- thiadiazole-2- thiol(S8) ,2- amino-5-[(5-mercapto-1,3
... Show MoreThe aim of this research to show the role of some enzymes in pathological mechanism of rheumatoid arthritis (RA) disease. Sixty patients with RA and matched number of apparently healthy volunteers were included in the study. Spectrophotometric methods were used to determine Peroxy nitrite (ONOO), Nitric oxide (NO), Nitric oxide synthase activity (NOS) cycloxygenase-2 activity (COX-2), glutathione peroxidase (GPX) activity and superoxide dismutase (SOD) activity in serum of both groups. Colorimetric assay kits were used to determine Iron. Rheumatoid factor (RF) was determined using Imuno-Latex kit. ONOO, NO levels, and NOS activity were significantly higher in the patients compared to the control group. Conversely, Iron level, SOD
... Show MoreA new series of transition metal complexes of Cu(II), Ni(II), Co(II) and Fe(III) have been synthesized from the Schiff base (L1) and (L2) derived from Semicarbazide hydro chloride and 4-chlorobenzaldehyde or 4-bromobenzaldehyde. The structural features have been arrived from their elemental analyses, magnetic susceptibility, molar conductivity, IR, UV-Vis. and 1H NMR spectral studies. The data show that the complexes have composition of [M(L)2](NO3)2 and [Fe(L)2 (NO3)2](NO3) where the M=Co(II),Ni(II) and Cu(II) ;L=L1and L2 type. The magnetic susceptibility and UV-Vis spectral data of the complexes suggest a square planer geometry for Co(II) and Cu(II) but Fe(III) octahedral geometry and Ni(II) tetrahedral geometry around the central metal i
... Show More