A study was carried out to determine the concentrations of trace metals in vegetables and fruits, which are locally available in the markets of Baghdad-samples of fourteen varieties of vegetables and fruits, belonging to Beta vulgaris, Brassica rapa, Daucus carota, Allium cepa, Eurica sativa, Malva silvestris, Coriandrum Sativum, Trigonella Foenum craecum, Anethum graveolens, Barassica oleracea, Phaseolus vulgaris, citrus reticulata, Py rus malus, and Punica granatum. Analysis for Cd,Pb, Mn, Fe, Co, Ni, Cu and Zn were determined by flame atomic absorption sp ectrophotometry. The results indicated that the Malva silvestris recorded the highest concentrations of Cd and Mn while Allium cepa showed the highest concentrations of Pb and Cu. But Eurica sativa, Anethum graveolens, phaseolus vulgaris and Daucus carota were observed the highest values of Fe, Co, Ni and Zn respectively. It can be noticed that the zinc has the highest values while the nickel recorded the lowest values in all studied samples.
Aerial manipulation of objects has a number of advantages as it is not limited by the morphology of the terrain. One of the main problems of the aerial payload process is the lack of real-time prediction of the interaction between the gripper of the aerial robot and the payload. This paper introduces a digital twin (DT) approach based on impedance control of the aerial payload transmission process. The impedance control technique is implemented to develop the target impedance based on emerging the mass of the payload and the model of the gripper fingers. Tracking the position of the interactional point between the fingers of gripper and payload, inside the impedance control, is achieved using model predictive control (MPD) approach.
... Show MoreAlzheimer's disease (AD) increasingly affects the elderly and is a major killer of those 65 and over. Different deep-learning methods are used for automatic diagnosis, yet they have some limitations. Deep Learning is one of the modern methods that were used to detect and classify a medical image because of the ability of deep Learning to extract the features of images automatically. However, there are still limitations to using deep learning to accurately classify medical images because extracting the fine edges of medical images is sometimes considered difficult, and some distortion in the images. Therefore, this research aims to develop A Computer-Aided Brain Diagnosis (CABD) system that can tell if a brain scan exhibits indications of
... Show MoreDiabetes mellitus caused by insulin resistance is prompted by obesity. Neuropeptide Nesfatin-1 was identified in several organs, including the central nervous system and pancreatic islet cells. Nesfatin-1 peptide appears to be involved in hypothalamic circuits that energy homeostasis and control food intake. Adiponectin is a plasma collagen-like protein produced by adipocytes that have been linked to the development of insulin resistance (IR), diabetes mellitus type 2 (DMT2), and cardiovascular disease (CVD). Resistin was first identified as an adipose tissue–specific hormone that was linked to obesity and diabetes. The aim of this study was to estimate the relationship between human serum nesfatin-1, adiponect
... Show MoreThis article deals with the approximate algorithm for two dimensional multi-space fractional bioheat equations (M-SFBHE). The application of the collection method will be expanding for presenting a numerical technique for solving M-SFBHE based on “shifted Jacobi-Gauss-Labatto polynomials” (SJ-GL-Ps) in the matrix form. The Caputo formula has been utilized to approximate the fractional derivative and to demonstrate its usefulness and accuracy, the proposed methodology was applied in two examples. The numerical results revealed that the used approach is very effective and gives high accuracy and good convergence.
Within the framework of big data, energy issues are highly significant. Despite the significance of energy, theoretical studies focusing primarily on the issue of energy within big data analytics in relation to computational intelligent algorithms are scarce. The purpose of this study is to explore the theoretical aspects of energy issues in big data analytics in relation to computational intelligent algorithms since this is critical in exploring the emperica aspects of big data. In this chapter, we present a theoretical study of energy issues related to applications of computational intelligent algorithms in big data analytics. This work highlights that big data analytics using computational intelligent algorithms generates a very high amo
... Show MoreMany oil and gas processes, including oil recovery, oil transportation, and petroleum processing, are negatively impacted by the precipitation and deposition of asphaltene. Screening methods for determining the stability of asphaltenes in crude oil have been developed due to the high cost of remediating asphaltene deposition in crude oil production and processing. The colloidal instability index, the Asphaltene-resin ratio, the De Boer plot, and the modified colloidal instability index were used to predict the stability of asphaltene in crude oil in this study. The screening approaches were investigated in detail, as done for the experimental results obtained from them. The factors regulating the asphaltene precipitation are different fr
... Show MoreEvaluating treatment effect on interferon-alpha in female patients with systemic lupus erythematosus: a case-control study
The use of Bayesian approach has the promise of features indicative of regression analysis model classification tree to take advantage of the above information by, and ensemble trees for explanatory variables are all together and at every stage on the other. In addition to obtaining the subsequent information at each node in the construction of these classification tree. Although bayesian estimates is generally accurate, but it seems that the logistic model is still a good competitor in the field of binary responses through its flexibility and mathematical representation. So is the use of three research methods data processing is carried out, namely: logistic model, and model classification regression tree, and bayesian regression tree mode
... Show More