The 3D electro-Fenton technique is, due to its high efficiency, one of the technologies suggested to eliminate organic pollutants in wastewater. The type of particle electrode used in the 3D electro-Fenton process is one of the most crucial variables because of its effect on the formation of reactive species and the source of iron ions. The electrolytic cell in the current study consisted of graphite as an anode, carbon fiber (CF) modified with graphene as a cathode, and iron foam particles as a third electrode. A response surface methodology (RSM) approach was used to optimize the 3D electro-Fenton process. The RSM results revealed that the quadratic model has a high R2 of 99.05 %. At 4 g L-1 iron foam particles, time of 5 h, and 1 g of graphene, the maximum efficiency of phenol removal of 92.58 % and chemical oxygen demand (COD) of 89.33 % were achieved with 32.976 kWh kg-1 phenol of consumed power. Based on the analysis of variance (ANOVA) results, the time has the highest impact on phenol removal efficiency, followed by iron foam and graphene dosage. In the present study, the 3D electro-Fenton technique with iron foam partials and carbon fiber modified with graphene was detected as a great choice for removing phenol from aqueous solutions due to its high efficiency, formation of highly reactive species, with excellent iron ions source electrode.
A.C electrical conductivity and dielectric properties for poly
(vinyl alcohol) (PVA) /poly (ethylene oxide) (PEO) blends undoped
and doped with multi-walled carbon nanotube (MWCNTs) with
different concentrations (1, and 3 wt %) in the frequency range
(25x103 - 5x106 Hz) were investigated. Samples of (PVA/PEO)
blends undoped and doped with MWCNTs were prepared using
casting technique. The electrical conductivity measurements showed
that σA.C is frequency dependent and obey the relation σA.C =Aωs for
undoped and doped blends with 1% MWCNTs, while it is frequency
independent with increases of MWCNTs content to 3%. The
exponent s showed proceeding increase with the increase of PEO
ratio (≥50%) for undope
Oscillation criterion is investigated for all solutions of the first-order linear neutral differential equations with positive and negative coefficients. Some sufficient conditions are established so that every solution of eq.(1.1) oscillate. Generalizing of some results in [4] and [5] are given. Examples are given to illustrated our main results.
The development of new building materials, able of absorbing more energy is an active research area. Engineering Cementitious Composite (ECC) is a class of super-elastic fiberreinforced cement composites characterized by high ductility and tight crack width control. The use of bendable concrete produced from Portland Limestone Cement (PLC) may lead to an interest in new concrete mixes. Impact results of bendable concrete reinforced with steel mesh and polymer fibers will provide data for the use of this concrete in areas subject to impact loading. The experimental part consisted of compressive strength and impact resistance tests along with a result comparison with unreinforced concrete. Concrete samples, with dimensions of 100×
... Show MoreA new two series of liquid crystalline Schiff bases containing thiazole moiety with different length of alkoxy spacer were synthesized, and the relation between the spacer length and the liquid crystalline behavior was investigated. The molecular structures of these compounds were performed by elemental analysis and FTIR, 1HNMR spectroscopy. The liquid crystalline properties were examined by hot stage optical polarizing microscopy (OPM) and differential scanning calorimetry (DSC). All compouns of the two series display liquid crystalline nematic mesophase. The liquid crystalline behaviour has been analyzed in terms of structural property relationship
A series of new coumarin and N-amino-2-quinolone derivatives have been synthesized. The reaction of coumarin (1) with excess of Hydrazine hydrate 98% yielded 1-amino-2-quinolone (2), Compound (2) was reacted with different Sulfonyl chloride to yield Sulfonamides [ N-(2-oxoquinolin-1(2H)-yl) methane sulfonamide (3), N-(2-oxoquinolin-1(2H)-yl) Benzene sulfonamide (4) and 4-methyl-N-(2-oxoquinolin-1(2H)-yl) benzene sulfonamide (5) ], while reaction of 2-(4-methyl-2-oxo-2H-chromen-7-yloxy) acetic acid (8) with different amines yielded compounds [ 2-(4-methyl-2-oxo-2H-chromen-7-yloxy)-N-(2-oxoquinolin-1(2H)-yl) acetamide (9) and N-(5-methyl-1,3,4-thiadiazol-2-yl)-2-(4-methyl-2-oxo-2H-chromen-7-yloxy)acetamide (10) ] th
... Show MoreBackground: Dental calculus is mineralized dental plaque formed on teeth and dental prosthesis surfaces in the oral cavity. Urinary stone is a crystal aggregation formed in urinary system due to minerals saturation present in urine. The structure of dental calculus is similar to that of urinary stone. Objective: To assess oral hygiene and gingival status in patients with urinary stone. And compared with healthy subjects. Patients and Methods: Sixty participants, 25-40 years, were involved in this study who were divided into study and control group. The study group involved patients with urinary stone while the control group involved healthy subjects. Clinical parameters including plaque, calculus and gingival indices were recorded for al
... Show MoreThe fingerprints are the more utilized biometric feature for person identification and verification. The fingerprint is easy to understand compare to another existing biometric type such as voice, face. It is capable to create a very high recognition rate for human recognition. In this paper the geometric rotation transform is applied on fingerprint image to obtain a new level of features to represent the finger characteristics and to use for personal identification; the local features are used for their ability to reflect the statistical behavior of fingerprint variation at fingerprint image. The proposed fingerprint system contains three main stages, they are: (i) preprocessing, (ii) feature extraction, and (iii) matching. The preprocessi
... Show More