The 3D electro-Fenton technique is, due to its high efficiency, one of the technologies suggested to eliminate organic pollutants in wastewater. The type of particle electrode used in the 3D electro-Fenton process is one of the most crucial variables because of its effect on the formation of reactive species and the source of iron ions. The electrolytic cell in the current study consisted of graphite as an anode, carbon fiber (CF) modified with graphene as a cathode, and iron foam particles as a third electrode. A response surface methodology (RSM) approach was used to optimize the 3D electro-Fenton process. The RSM results revealed that the quadratic model has a high R2 of 99.05 %. At 4 g L-1 iron foam particles, time of 5 h, and 1 g of graphene, the maximum efficiency of phenol removal of 92.58 % and chemical oxygen demand (COD) of 89.33 % were achieved with 32.976 kWh kg-1 phenol of consumed power. Based on the analysis of variance (ANOVA) results, the time has the highest impact on phenol removal efficiency, followed by iron foam and graphene dosage. In the present study, the 3D electro-Fenton technique with iron foam partials and carbon fiber modified with graphene was detected as a great choice for removing phenol from aqueous solutions due to its high efficiency, formation of highly reactive species, with excellent iron ions source electrode.
Non Uniform Illumination biological image often leads to diminish structures and inhomogeneous intensities of the image. Algorithm has been proposed using Morphological Operations different types of structuring elements including (dick, line, square and ball) with the same parameters of (15).To correct the non-uniform illumination and enhancement biological images, the non-uniform background illumination have been removed from image, using (contrast adjustment, histogram equalization and adaptive histogram equalization). The used basic approach to extract the statistical features values from gray level of co-occurrence matrices (GLCM) can show the typical values for features content of biological images that can be in form of shape or sp
... Show MoreThis study was conducted to test the effect of aqueous and alcoholic extracts for cyperus rotundus on the mitosis in tap roots of Allium cepa. the result of general an identical qualitative tests showed contains certain compounds that of crude aqueous and alcoholic extract, Used as five different concentrations of (10, 20.38, 56, 75) mg / ml for a period of four hours of treatment. After the chemical has been detected for some preliminary chemical compounds of the crude aqueous extract, while the alcoholic extract either phenol compound has been detected for phenols using several techniques included the use of thin layer chromatography TLC and measurement of disability factor RF and the degree of fusion and measurement of absorbance. The r
... Show MoreUnlike welding, soldering does not involve melting the work pieces. Soldering is a process in which two or more items are joined together by melting and putting a filler metal (solder) into the joint. Failure in the solder joint may make the system components lose their functions. Electrical wiring and electronic components are joined to devices and printed circuit boards using soldering. Soldering and brazing are both used in the assembly of musical instruments. Lead-tin alloy solder employed in the current investigation which has a diameter of 4 mm and a density of 11.0103 kg/m3 with continuous heat flux heating from the domain's left side and complete insulation on the other side. The melting of PCM was simulated using the ANSYS
... Show MoreA new tool geometry was used to achieve friction stir spot welding (FSSW) in which the shoulder was designed separately from the rotating pin, and in order to examine weldment strength through the modified tool, a lap joints of AA2024 aluminum alloy plate 1 mm thick were welded successfully by using 6 mm pin diameter and varying process parameters (rotational speeds, tool nose geometry, and depth of tool penetration in the lower welded plate). Experimental tests indicate that the maximum average tensile shear load was 3100 N at the best selected condition. Microstructure examination and micro hardness test along the spot zones were investigated as well as measuring pin penetration load. Visual inspection of the welded spot surface shows a g
... Show MoreDensity functional theory (DFT) calculations were used to evaluate the capability of Glutamine (Gln) and its derivative chemicals as inhibitors for the anti-corrosive behavior of iron. The current work is devoted to scrutinizing reactivity descriptors (both local and global) of Gln, two states of neutral and protonated. Also, the change of Gln upon the incorporation into dipeptides was investigated. Since the number of reaction centers has increased, an enhancement in dipeptides’ inhibitory effect was observed. Thus, the adsorption of small-scale peptides and glutamine amino acids on Fe surfaces (1 1 1) was performed, and characteristics such as adsorption energies and the configuration with the highest stability and lowest energy were ca
... Show MoreRecently, interest in the use of projectiles in research on recycling waste materials for construction applications has grown. Using recycled materials for the construction of asphalt concrete pavement, in the meantime, has become a topic of research due to its significant benefits, such as cost savings and reduced environmental impacts. This study reports on comprehensive experimental research conducted using a typical mechanical milling waste, iron filing waste (IFW), as an alternative fine aggregate for warm mix asphalt (WMA) for pavement wearing surface applications. A type of IFW from a local machine workshop was used to replace the conventional fine aggregate, fine natural sand (FNS), at percentages of 25%, 50% 75%, and 100% b
... Show MoreThe problem of Bi-level programming is to reduce or maximize the function of the target by having another target function within the constraints. This problem has received a great deal of attention in the programming community due to the proliferation of applications and the use of evolutionary algorithms in addressing this kind of problem. Two non-linear bi-level programming methods are used in this paper. The goal is to achieve the optimal solution through the simulation method using the Monte Carlo method using different small and large sample sizes. The research reached the Branch Bound algorithm was preferred in solving the problem of non-linear two-level programming this is because the results were better.
In this paper, the Magnetohydrodynamic (MHD) for Williamson fluid with varying temperature and concentration in an inclined channel with variable viscosity has been examined. The perturbation technique in terms of the Weissenberg number to obtain explicit forms for the velocity field has been used. All the solutions of physical parameters of the Darcy parameter , Reynolds number , Peclet number and Magnetic parameter are discussed under the different values as shown in plots.