Preferred Language
Articles
/
Exfww5MBVTCNdQwCnOqh
CT scan and deep learning for COVID-19 detection
...Show More Authors

Scopus Crossref
View Publication
Publication Date
Tue Jun 20 2023
Journal Name
Baghdad Science Journal
Detection of Autism Spectrum Disorder Using A 1-Dimensional Convolutional Neural Network
...Show More Authors

Autism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D

... Show More
View Publication Preview PDF
Scopus (32)
Crossref (22)
Scopus Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Tropical Journal Of Natural Product Research
Detection of Herpes Simplex Virus Type 1 in Patients Affected by Conjunctivitis
...Show More Authors

Herpes simplex virus (HSV) is a common human pathogen that causes severe infections in newborns and immunocompromised patients. Conjunctivitis or corneal epithelial keratitis is caused by HSV type 1 all over the world and at all times of the year. The present study was aimed at detecting HSV in patients suffering from conjunctivitis. One hundred and ten (110) clinical samples (90 patients and 20 controls, both males and females) of eye conjunctiva swabs were collected from patients of different ages. The samples were analyzed using qPCR and ELISA techniques. The qPCR results revealed that HSV was present in 47 (52.2%) of the 90 patients who were infected. Of these patients, 25 (48.0%) were males and 22 (57.8%) were females, indicati

... Show More
View Publication Preview PDF
Scopus
Publication Date
Mon Apr 19 2010
Journal Name
Computer And Information Science
Quantitative Detection of Left Ventricular Wall Motion Abnormality by Two-Dimensional Echocardiography
...Show More Authors

Echocardiography is a widely used imaging technique to examine various cardiac functions, especially to detect the left ventricular wall motion abnormality. Unfortunately the quality of echocardiograph images and complexities of underlying motion captured, makes it difficult for an in-experienced physicians/ radiologist to describe the motion abnormalities in a crisp way, leading to possible errors in diagnosis. In this study, we present a method to analyze left ventricular wall motion, by using optical flow to estimate velocities of the left ventricular wall segments and find relation between these segments motion. The proposed method will be able to present real clinical help to verify the left ventricular wall motion diagnosis.

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed Sep 07 2022
Journal Name
2022 Iraqi International Conference On Communication And Information Technologies (iiccit)
Construct an Efficient DDoS Attack Detection System Based on RF-C4.5-GridSearchCV
...Show More Authors

View Publication
Scopus (5)
Crossref (3)
Scopus Crossref
Publication Date
Mon May 09 2022
Journal Name
مجلة كلية التربية الاساسية الجامعة المستنصرية
Detection of sul1 resistance gene in Acinetobacter baumannii from different Clinical cases
...Show More Authors

Publication Date
Sat Apr 01 2023
Journal Name
Journal Of Engineering
Proposed Face Detection Classification Model Based on Amazon Web Services Cloud (AWS)
...Show More Authors

One of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services th

... Show More
View Publication Preview PDF
Crossref (6)
Crossref
Publication Date
Sun Jan 01 2017
Journal Name
Spe
SPE-188966-MS: Drilling problems detection in Basrah oil fields using smartphones
...Show More Authors

Scopus (1)
Scopus
Publication Date
Wed Jul 10 2024
Journal Name
The Open Neuroimaging Journal
The Efficacy of Bedside Chest Ultrasound in the Detection of Traumatic Pneumothorax
...Show More Authors
Background

Chest X-rays have long been used to diagnose pneumothorax. In trauma patients, chest ultrasonography combined with chest CT may be a safer, faster, and more accurate approach. This could lead to better and quicker management of traumatic pneumothorax, as well as enhanced patient safety and clinical results.

Aim

The purpose of this study was to assess the efficacy and utility of bedside US chest in identifying traumatic pneumothorax and also its capacity to estimate the extent of the lesion in comparison to the gold standard modality chest computed tomography.

... Show More
View Publication
Scopus (5)
Crossref (6)
Scopus Crossref
Publication Date
Fri Mar 19 2021
Journal Name
Annals Of The Romanian Society For Cell Biology
Molecular Detection of Acientobacter Baumannii Isolated From Nosocomial Infections in Baghdad Hospitals
...Show More Authors

 The present study is an attempt for detection of A. baumannii by conventional and PCR methods using species-specific primers for these A. baumannii. A total of 87 samples were collected from hospitals in Baghdad (Al-Rasafa and Al-Karkh Hospitals) during the period from 2019 to 2020.The samples included: 40 specimens, from wounds, respiratory infections (sputum), burns, CSF and 47 samples from the hospital environment (swabs), while samples collected from intensive care unit including patient beds, surgical instruments and appliances, emergency lobby and baby incubators. A. baumannii isolate identification depending on the morphologic characteristics on the culture media including, blood agar, MacConkey  agar, as well as t

... Show More
View Publication Preview PDF
Publication Date
Tue Apr 01 2025
Journal Name
Mesopotamian Journal Of Cybersecurity
The Impact of Feature Importance on Spoofing Attack Detection in IoT Environment
...Show More Authors

The Internet of Things (IoT) is an expanding domain that can revolutionize different industries. Nevertheless, security is among the multiple challenges that it encounters. A major threat in the IoT environment is spoofing attacks, a type of cyber threat in which malicious actors masquerade as legitimate entities. This research aims to develop an effective technique for detecting spoofing attacks for IoT security by utilizing feature-importance methods. The suggested methodology involves three stages: preprocessing, selection of important features, and classification. The feature importance determines the most significant characteristics that play a role in detecting spoofing attacks. This is achieved via two techniques: decision tr

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref