Tin Selenide (SnSe) Nano crystalline thin films of thickness 400±20 nm were deposited on glass substrate by thermal evaporation technique at R.T under a vacuum of ∼ 2 × 10− 5 mbar to study the effect of annealing temperatures (as-deposited, 100, 150 and 200) °C on its structural, surface morphology and optical properties. The films structure was characterized using X-ray diffraction (XRD) which showed that all the films have polycrystalline in nature and orthorhombic structure, with the preferred orientation along the (111) plane. These films was synthesized of very fine crystallites size of (14.8-24.5) nm, the effect of annealing temperatures on the cell parameters, crystallite size and dislocation density were observed. Surface morphology of SnSe films as-prepared and annealed are investigated using atomic force microscopy (AFM) analysis, the grain size of these films vary in the rang from (60.12 to 94.70)nm with increasing annealing temperatures. The results obtained from XRD and AFM indicated that these films were Nano crystalline. The optical constants like absorption coefficient, loss factor, quality factor and optical conductivity of these films has been evaluated. The optical properties revealed that SnSe films have optical energy band gap values increase from (1.5-2.2) eV upon annealing temperatures and high value of absorption coefficient hich implies choosing them in solar cell application.
في الدراسة الحالية، تم تصنيع جسيمات ZrO2 النانوية باستخدام مستخلص نباتي مشتق من نبات Vitex agnus castus، ووسط قلوي مثل هيدروكسيد الصوديوم. تم استخدام أسلوب التخليق الحيوي لتحضير جزيئات أوكسيد الزركونيوم النانوية لهذا المشروع البحثي. تتميز هذه الطريقة عن غيرها بسبب فعاليتها من حيث التكلفة وبساطتها وقلة المخاطر المحتملة. وتم تشخيص العينات المحضرة باستخدام المجهر الإلكتروني النافذ TEM، المجهر الإلكتروني الماسح SEM،
... Show MoreSoaking dentures with disinfection solutions is an effective way of keeping dentures in a healthy status; however, immersions in these solutions have a negative effect on the bond strength of denture base and denture teeth. The aim of this study was to evaluate the bond strength between denture acrylic teeth and heat-cured Poly (methyl methacrylate) denture base material (with and without nano silica) after disinfection with different chemical disinfectants for a simulated period of six months. One hundred specimens of maxillary central incisors attached to PMMA were divided into two groups; 50 specimens of PMMA without nano silica and 50 specimens of PMMA reinforced with 5 wt% of nano silica. Specimens of each group were immersed in five i
... Show MoreThis study evaluates the flexural behavior of ultra-thin (50 mm) one‑way reinforced‑concrete (RC) slabs retrofitted with near‑surface mounted (NSM) carbon‑fiber‑reinforced polymer (CFRP) rods under quasi‑static loading. T300‑grade CFRP rods (≈4 mm diameter) were bonded in pre‑cut 7 mm × 7 mm grooves using a two‑part epoxy. As a proof-of-concept experimental baseline, three simply‑supported specimens (1000 mm × 500 mm × 50 mm) were tested in a six‑point bending configuration (four applied loads + two reactions): two conventional controls and one strengthened slab. A load‑control rate of ~15 kN/min was applied; the controls were cycled twice and the strengthened slab four times. Relative to the average of
... Show MoreAg2O (Silver Oxide) is an important p-type (in chasm to most oxides which were n-type), with a high conductivity semiconductor. From the optical absorbance data, the energy gap value of the Ag2O thin films was 1.93 eV, where this value substantially depends on the production method, vacuum evaporation of silver, and optical properties of Ag2O thin films are also affected by the precipitation conditions. The n-type and p-type silicon substrates were used with porous silicon wafers to precipitate ±125 nm, as thick Ag2O thin film by thermal evaporation techniques in vacuum and via rapid thermal oxidation of 400oC and oxidation time 95 s, then characterized by measurement of
... Show MoreABSTRACT
This research included the preparation and characterization of new demulsifies from natural and synthetic polymers of chitosan and polyvinyl alcohol that are environmentally friendly and at the same time have high efficacy comparable to emulsifiers. imported foreign. The prepared compounds were examined using infrared spectroscopy and nuclear magnetic resonance spectroscopy, and all the spectral signals of the polymers were in good agreement with the chemical composition of the polymers. And the melting and decomposition that occur on polymers at high temperatures. The effect of the length and type of side chain in the compositions of polymers on the process of water separation of oil emulsions w
... Show More In this work a Nd:YVO4 thin disc laser setup is designed and fabricated. The disk laser system
is designed to be compact. The laser crystal was pumped by a 808 nm diode laser. The effect of input
current and pulse frequency on the output energy at pulse operation mode, and the effect of the input
current on the output power at CW mode operation are tested. At the pulsed mode, the output energy
increased linearly with the input current and decreased with pulse frequency. The threshold current
increased with increasing pulse frequency increasing. The maximum output energy from the thin disc
laser was 0.98 μJ at 1.3 kHz frequency, with 0.49A. A minimum threshold current for CW mode of
operation. The maximum outpu
Industrial development has recently increased, including that of plastic industries. Since plastic has a very long analytical life, it will cause environmental pollution, so studies have resorted to reusing recycled waste plastic (sustainable plastic) to produce environmentally friendly concrete (green concrete). In this research, producing environmentally friendly load-bearing concrete masonry units (blocks) was considered where five concrete mixtures were compressed at the blocks producing machine. The cement content reduced from 400 kg/m3 (B-400) to 300 kg/m3 (B-300) then to 200 kg/m3 (B-200). While (B-380) was produced using 380 kg/m3 cement and 20 kg/m3 nano-sil
... Show More