In this study, several ionanofluids (INFs) were prepared in order to study their efficiency as a cooling medium at 25 °C. The two-step technique is used to prepare ionanofluid (INF) by dispersing multi-walled carbon nanotubes (MWCNTs) in two concentrations 0.5 and 1 wt% in ionic liquid (IL). Two types of ionic liquids (ILs) were used: hydrophilic represented by 1-ethyl-3-methylimidazolium tetrafluoroborate [EMIM][BF4] and hydrophobic represented by 1-hexyl-3-methylimidazolium hexafluorophosphate [HMIM][PF6]. The thermophysical properties of the prepared INFs including thermal conductivity (TC), density and viscosity were measured experimentally. The TC measurement showed an enhancement of about 3% for INF and of 1% MWCNT in [EMIM][BF4] at a temperature of 298.15 K: the TC was 0.186 W/m.K, the kinematic viscosity was 100 centistokes (cSt), and the density was 1.283 g.cm−3. On the other hand, the TC of 1% MWCNT in [HMIM][PF6] INF enhanced by 5%. In this case, at a temperature of 298.15 K, the TC was 0.158 W/m, the kinematic viscosity was 1200 cSt, and the density was 1.294 g.cm−3. Furthermore, the stability of the prepared INFs was measured using the zeta potential method after 28 days of preparation. The results show very good dispersion of the nanoparticles in the ILs for all the prepared INFs. The zeta potential was -69.30 mV and - 45.34 mV for 0.5% and 1% MWCNT in [EMIM][BF4], respectively. On the other hand, zeta potential was -51.78 and -46.67 mV for 0.5% and 1% MWCNT in [HMIM][PF6], respectively. According to the obtained results, the preferable INFs to use as a cooling medium at 25 °C was the INF of 1 wt% MWCNT in [EMIM][BF4], since it provides better thermophysical properties than the other prepared INFs.
In this research a study of the effect of quality, sequential and directional layers for three types of fibers are:(Kevlar fibers-49 woven roving and E- glass fiber woven roving and random) on the fatigue property using epoxy as matrix. The test specimens were prepared by hand lay-up method the epoxy resin used as a matrix type (Quick mast 105) in prepared material composit . Sinusoidal wave which is formed of variable stress amplitudes at 15 Hz cycles was employed in the fatigue test ( 10 mm )and (15mm) value 0f deflection arrival to numbers of cycle failure limit, by rotary bending method by ( S-N) curves this curves has been determined ( life , limit and fa
... Show MoreIn this study, an easy, low-cost, green, and environmentally
friendlier reagents have been used to prepare CdS QDs, in chemical
reaction method by mixed different ratio of CdO and sulfur in
paraffin liquid as solvent and oleic acid as the reacting media in
different concentration to get the optimum condition of the reaction
to formation CdS QDs. The results give an indication that the
behavior is at small concentration of 4ml of the oleic acid is best
concentration which give CdS QDs of small about to 9.23 nm with
nano fiber configuration.
Nonalcoholic fatty liver disease (NAFLD) is a common liver disease that ranges from simple steatosis to nonalcoholic steatohepatitis (NASH). So far, the underlying mechanism remains poorly understood. Here, we show that hepatic carboxylesterase 2 (CES2) is markedly reduced in NASH patients, diabetic
This work is based on the synthesis of Cobalt(II) and Cadmium(II) mixed-ligands compounds obtained from the reaction of N'-(4-methylsulfanyl-benzoyl)-hydrazine carbodithioic acid methyl ester as a ligand and using ethylendiamine (en), 2,2'-bipyridine (bipy) or 1,10-phenanthroline (phen) as a co-ligand. The synthesis of ligand (HL) was based on multi-steps synthetic procedure. The reaction of 4-methylsulfanyl-benzoyl chloride with hydrazine gave 4-methylsulfanyl-benzoic acid hydrazide. This compound was reacted with carbon disulfide and potassium hydroxide in methanol to yield N'-(4-methylsulfanylbenzoyl)-hydrazine potassium thiocarbamate, which upon reaction with methyl iodide resulted in the formation of the ligand. A range of physico-chem
... Show MoreThe Invar effect in 3D transition metal such as Ni and Mn, were prepared on a series composition of binary Ni1-xMnx system with x=0.3, 0.5, 0.8 by using powder metallurgy technique. In this work, the characterization of structural and thermal properties have been investigated experimentally by X-ray diffraction, thermal expansion coefficient and vibrating sample magnetometer (VSM) techniques. The results show that anonymously negative thermal expansion coefficient are changeable in the structure. The results were explained due to the instability relation between magnetic spins with lattice distortion on some of ferromagnetic metals.