In this paper, the goal of proposed method is to protect data against different types of attacks by unauthorized parties. The basic idea of proposed method is generating a private key from a specific features of digital color image such as color (Red, Green and Blue); the generating process of private key from colors of digital color image performed via the computing process of color frequencies for blue color of an image then computing the maximum frequency of blue color, multiplying it by its number and adding process will performed to produce a generated key. After that the private key is generated, must be converting it into the binary representation form. The generated key is extracted from blue color of keyed image then we selects a cover that is digital color image for hiding a text in that selected cover for testing a proposed method of generating the private key. The hiding algorithm used is least significant bit (LSB). Finally, the generated key is tested by hiding process and changing the extension of image, after that notice the generated key is not changed or modified. the Matlap language is used to design and implement a proposed method.
The study aims to identify the bargaining differences between the governmental and private kindergarteners; the rivalry differences between the governmental and private kindergarteners; the rivalry and bargaining differences among private kindergarteners; and the rivalry and bargaining differences among governmental kindergarteners. The researchers had raised a question; is there any difference of rivalry and bargaining between governmental and private kindergarteners?. A total of (150) kindergarteners ranged from 5 to 6 years old, (90) student from governmental kindergarten and (60) student from private kindergarten, were selected as a sample of this study. Fifteen governmental and private kindergarten were chosen from al-rasafa directo
... Show MoreBACKGROUND: Color Vision Deficiency (CVD) is mostly an inherited trait and is not an uncommon problem. Prevalence of CVD differs among different ethnic and geographic properties of the population that affect their genetic constitution. Ishihara plates remain an internationally accepted tool for screening red-green CVD. OBJECTIVE: To determine the prevalence of red-green CVD among adult males from Baghdad province. PATIENTS AND METHODS: One thousand and five (1005) adult males were enrolled in this study, using a systematic sampling technique, and were screened for CVD utilizing 24-plate Ishihara plates and re-tested by EnChroma 39-Color plates. All males were residing in Baghdad and the center of Iraq. RESULTS: Among all tested males, 948 r
... Show MoreA numerical method is developed for calculation of the wake geometry and aerodynamic forces on two-dimensional airfoil under going an arbitrary unsteady motion in an inviscid incompressible flow (panel method). The method is applied to sudden change in airfoil incidence angle and airfoil oscillations at high reduced frequency. The effect of non-linear wake on the unsteady aerodynamic properties and oscillatory amplitude on wake rollup and aerodynamic forces has been studied. The results of the present method shows good accuracy as compared with flat plate and for unsteady motion with heaving and pitching oscillation the present method also shows good trend with the experimental results taken from published data. The method shows good result
... Show MoreThe Korteweg-de Vries equation plays an important role in fluid physics and applied mathematics. This equation is a fundamental within study of shallow water waves. Since these equations arise in many applications and physical phenomena, it is officially showed that this equation has solitary waves as solutions, The Korteweg-de Vries equation is utilized to characterize a long waves travelling in channels. The goal of this paper is to construct the new effective frequent relation to resolve these problems where the semi analytic iterative technique presents new enforcement to solve Korteweg-de Vries equations. The distinctive feature of this method is, it can be utilized to get approximate solutions for travelling waves of
... Show MoreThe main object of this study is to solve a system of nonlinear ordinary differential equations (ODE) of the first order governing the epidemic model using numerical methods. The application under study is a mathematical epidemic model which is the influenza model at Australia in 1919. Runge-kutta methods of order 4 and of order 45 for solving this initial value problem(IVP) problem have been used. Finally, the results obtained have been discussed tabularly and graphically.
In this paper, we consider a new approach to solve type of partial differential equation by using coupled Laplace transformation with decomposition method to find the exact solution for non–linear non–homogenous equation with initial conditions. The reliability for suggested approach illustrated by solving model equations such as second order linear and nonlinear Klein–Gordon equation. The application results show the efficiency and ability for suggested approach.
Many numerical approaches have been suggested to solve nonlinear problems. In this paper, we suggest a new two-step iterative method for solving nonlinear equations. This iterative method has cubic convergence. Several numerical examples to illustrate the efficiency of this method by Comparison with other similar methods is given.
This paper derives the EDITRK4 technique, which is an exponentially fitted diagonally implicit RK method for solving ODEs . This approach is intended to integrate exactly initial value problems (IVPs), their solutions consist of linear combinations of the group functions and for exponentially fitting problems, with being the problem’s major frequency utilized to improve the precision of the method. The modified method EDITRK4 is a new three-stage fourth-order exponentially-fitted diagonally implicit approach for solving IVPs with functions that are exponential as solutions. Different forms of -order ODEs must be derived using the modified system, and when the same issue is reduced to a framework of equations that can be sol
... Show MoreIn this paper, we apply a new technique combined by a Sumudu transform and iterative method called the Sumudu iterative method for resolving non-linear partial differential equations to compute analytic solutions. The aim of this paper is to construct the efficacious frequent relation to resolve these problems. The suggested technique is tested on four problems. So the results of this study are debated to show how useful this method is in terms of being a powerful, accurate and fast tool with a little effort compared to other iterative methods.