This mini review provides an overview of methods for manufacturing expanded graphite (EGT) and the use of its composites with metal oxides in the field of photodegradation of dyes. Dyes from textile manufacturing represent a significant environmental pollution problem in waterways worldwide, highlighting the need for environmentally friendly and efficient technologies to remove dyes from industrial and local wastewater. Photodegradation technologies offer a low-cost, sustainable solution with minimal secondary pollution. Carbon-based materials, such as expanded graphite, are advantageous in enhancing catalytic activity. Accordingly, this review will explore the different fabrication techniques of expanded graphite and summarize the recent development of EGT-metal oxide composite in photocatalysis process towards environmental remediation application. From this study concludes that the photodegradation method using metal oxideexpanded graphite composite is an effective and cost-efficient option for degrading dyes.
The work includes fabrication of undoped and silver-doped nanostructured nickel oxide in form thin films, which use for applications such as gas sensors. Pulsed-laser deposition (PLD) technique was used to fabricate the films on a glass substrate. The structure of films is studied by using techniques of x-ray diffraction, SEM, and EDX. Thermal annealing was performed on these films at 450°C to introduce its effect on the characteristics of these films. The films were doped with a silver element at different doping levels and both electrical and gas sensing characteristics were studied and compared to those of the undoped films. Reasonable enhancements in these characteristics were observed and attributed to the effects of thermal annealing
... Show MoreThe purpose of this paper is to apply styrene butadiene rubber (SBR) as virgin alongside expanded polystyrene (EPS) resin as a recycled polymer after consumption in the presence of bagasse fibers (BF) as biomass source derived from sugarcane in different concentrations to reinforce this polymeric matrix to form affordable composites that can be used in manufacturing low-cost and sustainable car interior-trim constituents.
SBR and EPS represent an example for thermoplastic elastomers (
Polyacrylonitrile nanofiber (PANFS), a well-known polymers, has been extensively employed in the manufacturing of carbon nanofibers (CNFS), which have recently gained substantial attention due to their excellent features, such as spinnability, environmental friendliness, and commercial feasibility. Because of their high carbon yield and versatility in tailoring the final CNFS structure, In addition to the simple formation of ladder structures through nitrile polymerization to yield stable products, CNFS and PAN have been the focus of extensive research as potential production precursors. For instance, the development of biomedical and high-performance composites has now become achievable. PAN homopolymer or PAN-based precursor copolymer can
... Show MoreSolvents are important components in the pharmaceutical and chemical industries, and they are increasingly being used in catalytic reactions. Solvents have a significant influence on the kinetics and thermodynamics of reactions, and they can significantly change product selectivity. Solvents can influence product selectivity, conversion rates, and reaction rates. However, solvents have received a lot of attention in the field of green chemistry. This is due to the large amount of solvent that is frequently used in a process or formulation, particularly during the purification steps. However, neither the solvent nor the active ingredient in a formulation is directly responsible for the reaction product's composition. Because these ch
... Show MoreDental implants can be made of various materials, and amongst them, titanium and titanium alloy were the materials of choice for dental implants for many years because of their biocompatibility. The two alloys have a high level of biocompatibility, a lower modulus of elasticity, and better corrosion resistance than other alloys. Thus, they are frequently utilized in biomedical applications and mostly replace stiff fabrics. The latest advances in a new strontium oxide–cp titanium composite alloy are the main topic of this research. With regard to biomedical applications, additions of strontium oxide were synthesized at three distinct weight percentages (2%, 4%, and 6% by wt%). Powder metallurgy was used to create the alloys, which
... Show MoreHybrid architecture of ZnO nanorods/graphene oxide ZnO-NRs@GO synthesized by electrostatic self-assembly methods. The morphological, optical and luminescence characteristics of ZnO-NRs@GO and ZnO-NRs thin films have been described by FESEM, TEM, HRTEM, and AFM, which refers to graphene oxide have been coated ZnO-NRs with five layers. Here we synthesis ZnO-NRs@GO by simple, cheap and environmentally friendly method, which made it favorable for huge -scale preparation in many applications such as photocatalyst. ZnO-NRs@GO was applied as a photocatalyst Rodamin 6 G (R6G) dye from water using 532 nm diode laser-induced photocatalytic process. Overall degradation of R6G/ ZnO-NRs@GO was achieved after 90 minutes of laser irradiation while it ne
... Show MoreThe emergence of mixed matrix membranes (MMMs) or nanocomposite membranes embedded with inorganic nanoparticles (NPs) has opened up a possibility for developing different polymeric membranes with improved physicochemical properties, mechanical properties and performance for resolving environmental and energy-effective water purification. This paper presents an overview of the effects of different hydrophilic nanomaterials, including mineral nanomaterials (e.g., silicon dioxide (SiO2) and zeolite), metals oxide (e.g., copper oxide (CuO), zirconium dioxide (ZrO2), zinc oxide (ZnO), antimony tin oxide (ATO), iron (III) oxide (Fe2O3) and tungsten oxide (WOX)), two-dimensional transition (e.g., MXene), metal–organic framework (MOFs), c
... Show More