The precise classification of DNA sequences is pivotal in genomics, holding significant implications for personalized medicine. The stakes are particularly high when classifying key genetic markers such as BRAC, related to breast cancer susceptibility; BRAF, associated with various malignancies; and KRAS, a recognized oncogene. Conventional machine learning techniques often necessitate intricate feature engineering and may not capture the full spectrum of sequence dependencies. To ameliorate these limitations, this study employs an adapted UNet architecture, originally designed for biomedical image segmentation, to classify DNA sequences.The attention mechanism was also tested LONG WITH u-Net architecture to precisely classify DNA sequences into BRAC, BRAF, and KRAS categories. Our comprehensive methodology includes rigorous data preprocessing, model training, and a multi-faceted evaluation approach. The adapted U-Net model exhibited exceptional performance, achieving an overall accuracy of 0.96. The model also achieved high precision and recall rates across the classes, with precision ranging from 0.93 to 1.00 and recall between 0.95 and 0.97 for the key markers BRAC, BRAF, and KRAS. The F1-score for these critical markers ranged from 0.95 to 0.98. These empirical results substantiate the architecture’s capability to capture local and global features in DNA sequences, affirming its applicability for critical, sequence-based bioinformatics challenges
Rock mechanical properties are critical parameters for many development techniques related to tight reservoirs, such as hydraulic fracturing design and detecting failure criteria in wellbore instability assessment. When direct measurements of mechanical properties are not available, it is helpful to find sufficient correlations to estimate these parameters. This study summarized experimentally derived correlations for estimating the shear velocity, Young's modulus, Poisson's ratio, and compressive strength. Also, a useful correlation is introduced to convert dynamic elastic properties from log data to static elastic properties. Most of the derived equations in this paper show good fitting to measured data, while some equations show scatters
... Show MoreIntroduction to Medical Physics for Pharmacy Students and Medical Groups - ISBNiraq.org
The question about the existence of correlation between the parameters A and m of the Paris function is re-examined theoretically for brittle material such as alumina ceramic (Al2O3) with different grain size. Investigation about existence of the exponential function which fit a good approximation to the majority of experimental data of crack velocity versus stress intensity factor diagram. The rate theory of crack growth was applied for data of alumina ceramics samples in region I and making use of the values of the exponential function parameters the crack growth rate theory parameters were estimated.
A confluence of forces has brought journalism and journalism education to a precipice. The rise of fascism, the advance of digital technology, and the erosion of the economic foundation of news media are disrupting journalism and mass communication (JMC) around the world. Combined with the increasingly globalized nature of journalism and media, these forces are posing extraordinary challenges to and opportunities for journalism and media education. This essay outlines 10 core principles to guide and reinvigorate international JMC education. We offer a concluding principle for JMC education as a foundation for the general education of college students.
The study aimed at the following:
Identify the differences in average scores core thinking skills kindergarten children by variable sex (male - female), and by variable age (5.6 - 5.11).
To achieve this researcher adopted a standardized test of core thinking skills for the kindergarten children, which was built and standardization by the researcher Meyada Asaad Mussa 2012 . applied test on a sample of (814) ) boys and girls who were randomly chosen form, from directorates of Baghdad Education Adoption of the proportional distribution.
... Show More
This study Ajert to modify the chemical composition of milk fat cows and make it similar to the installation of milk fat mother through the addition of protein and soybean oil to be given Alkhltatnsp sensory protein that the best plan is the ratio of 1:1
Iraqi siliceous rocks were chosen to be used as raw materials in this study which is concern with the linear shrinkage and their related parameters. They are porcelinite from Safra area (western desert) and Kaolin Duekla, their powders were mixed in certain percentage, to shape compacts and sintered. The study followed with thermal and chemical treatments, which are calcination and acid washing. The effects on final compact properties such as linear shrinkage were studied. Linear shrinkage was calculated for sintered compacts to study the effects of calcination processes, chemical washing, weight percentage, sintering processes, loading moment were studied on this property where the compacts for groups is insulating materials.
Linear
Self-driving automobiles are prominent in science and technology, which affect social and economic development. Deep learning (DL) is the most common area of study in artificial intelligence (AI). In recent years, deep learning-based solutions have been presented in the field of self-driving cars and have achieved outstanding results. Different studies investigated a variety of significant technologies for autonomous vehicles, including car navigation systems, path planning, environmental perception, as well as car control. End-to-end learning control directly converts sensory data into control commands in autonomous driving. This research aims to identify the most accurate pre-trained Deep Neural Network (DNN) for predicting the steerin
... Show More