The precise classification of DNA sequences is pivotal in genomics, holding significant implications for personalized medicine. The stakes are particularly high when classifying key genetic markers such as BRAC, related to breast cancer susceptibility; BRAF, associated with various malignancies; and KRAS, a recognized oncogene. Conventional machine learning techniques often necessitate intricate feature engineering and may not capture the full spectrum of sequence dependencies. To ameliorate these limitations, this study employs an adapted UNet architecture, originally designed for biomedical image segmentation, to classify DNA sequences.The attention mechanism was also tested LONG WITH u-Net architecture to precisely classify DNA sequences into BRAC, BRAF, and KRAS categories. Our comprehensive methodology includes rigorous data preprocessing, model training, and a multi-faceted evaluation approach. The adapted U-Net model exhibited exceptional performance, achieving an overall accuracy of 0.96. The model also achieved high precision and recall rates across the classes, with precision ranging from 0.93 to 1.00 and recall between 0.95 and 0.97 for the key markers BRAC, BRAF, and KRAS. The F1-score for these critical markers ranged from 0.95 to 0.98. These empirical results substantiate the architecture’s capability to capture local and global features in DNA sequences, affirming its applicability for critical, sequence-based bioinformatics challenges
Water is necessary for sustainable development and healthy society. Groundwater, often, is not sufficient and protected for direct human consumption. Due to increase in the density of population the requirement of water is increasing. In this work, the assessment of groundwater quality was conducted in the south-west part of Basrah province. Spatial variations in the quality of groundwater in the study area have been analyzed utilizing GIS technique. The geochemical parameters of groundwater samples including pH, EC, TDS, Ca, Mg, Na, Cl, HCO3, SO4, and NO3 were assessed in this study. Information maps of the study area have been actually prepared to make use of the GIS spatial
... Show MoreModern automation robotics have replaced many human workers in industrial factories around the globe. The robotic arms are used for several manufacturing applications, and their responses required optimal control. In this paper, a robust approach of optimal position control for a DC motor in the robotic arm system is proposed. The general component of the automation system is first introduced. The mathematical model and the corresponding transfer functions of a DC motor in the robotic arm system are presented. The investigations of using DC motor in the robotic arm system without controller lead to poor system performance. Therefore, the analysis and design of a Proportional plus Integration plus Divertive (PID) controller is illustrated.
... Show MoreThe research involved a rapid, automated and highly accurate developed CFIA/MZ technique for estimation of phenylephrine hydrochloride (PHE) in pure, dosage forms and biological sample. This method is based on oxidative coupling reaction of 2,4-dinitrophenylhydrazine (DNPH) with PHE in existence of sodium periodate as oxidizing agent in alkaline medium to form a red colored product at ʎmax )520 nm (. A flow rate of 4.3 mL.min-1 using distilled water as a carrier, the method of FIA proved to be as a sensitive and economic analytical tool for estimation of PHE.
Within the concentration range of 5-300 μg.mL-1, a calibration curve was rectilinear, where the detection limit was 3.252 μg.mL
Circular thin walled structures have wide range of applications. This type of structure is generally exposed to different types of loads, but one of the most important types is a buckling. In this work, the phenomena of buckling was studied by using finite element analysis. The circular thin walled structure in this study is constructed from; cylindrical thin shell strengthen by longitudinal stringers, subjected to pure bending in one plane. In addition, Taguchi method was used to identify the optimum combination set of parameters for enhancement of the critical buckling load value, as well as to investigate the most effective parameter. The parameters that have been analyzed were; cylinder shell thickness, shape of stiffeners section an
... Show MoreThis research is qualitative in nature. It aims to investigate descriptively, analytically, and comparatively the modern AK model represented by the Sudan Open University Series, and the European framework, the common reference for Teaching Foreign Languages, to uncover what was achieved in them in terms of communication and language use. Accordingly, an integrated, multi-media approach has been adopted to enable the production and reception activities, and the spread of Arabic in vast areas of the world. Such a spread helps Arabic language to be in a hegemonic position with the other living languages. The study is based on getting benefit from human experiences and joint work in the field of teaching Arabic to non-Arabic speakers to mee
... Show MoreThe support vector machine, also known as SVM, is a type of supervised learning model that can be used for classification or regression depending on the datasets. SVM is used to classify data points by determining the best hyperplane between two or more groups. Working with enormous datasets, on the other hand, might result in a variety of issues, including inefficient accuracy and time-consuming. SVM was updated in this research by applying some non-linear kernel transformations, which are: linear, polynomial, radial basis, and multi-layer kernels. The non-linear SVM classification model was illustrated and summarized in an algorithm using kernel tricks. The proposed method was examined using three simulation datasets with different sample
... Show More