The expansion of the social media environment has created its own linguistic realities which involve more colloquial communication and practical employment of language. This research focuses on nominalizations in detail, which are originally formed words that have been changed for a noun role. These nominalizations are examined within the context of Facebook posts. The research aims to discover the various nominalizations used and how often they appear in a large sample of data from Public Facebook Posts Corpora. Computational linguistics opened new fields of study and enabled researchers to study large amounts of data easily, making it easier to identify patterns. Two computational methods of identifying nominalization in a large dataset were tested and evaluated from different aspects. Additionally, machine learning analysis tools were conducted to determine how nominalization affects the complexity and readability of the texts. Accordingly, Flesch-Kincaid Grade Level and Flesch Readability results were studied to identify nominalizations’ effect on the texts. The results present a high density of verbal nominalizations indicating that there is a preference to refer to actions or processes in an abbreviated manner. Instead, the study also explores the semantic and functional properties of nominalizations, discovering their employment for emotions and opinions, focusing on the ideas and informal nature of Facebook. Despite what the readability formulas imply about the relation between nominalization density and text difficulty, the research does not discount the fact that these metrics have their shortcomings, especially when comprehending direct user understanding is not taken under consideration. In conclusion, this study adds to the current literature on nominalizations by identifying their role in the social media discourse and importing important knowledge on the progressive changes in online linguistic usage
Predicting peterophysical parameters and doing accurate geological modeling which are an active research area in petroleum industry cannot be done accurately unless the reservoir formations are classified into sub-groups. Also, getting core samples from all wells and characterize them by geologists are very expensive way; therefore, we used the Electro-Facies characterization which is a simple and cost-effective approach to classify one of Iraqi heterogeneous carbonate reservoirs using commonly available well logs.
The main goal of this work is to identify the optimum E-Facies units based on principal components analysis (PCA) and model based cluster analysis(MC
... Show MoreMachine learning (ML) is a key component within the broader field of artificial intelligence (AI) that employs statistical methods to empower computers with the ability to learn and make decisions autonomously, without the need for explicit programming. It is founded on the concept that computers can acquire knowledge from data, identify patterns, and draw conclusions with minimal human intervention. The main categories of ML include supervised learning, unsupervised learning, semisupervised learning, and reinforcement learning. Supervised learning involves training models using labelled datasets and comprises two primary forms: classification and regression. Regression is used for continuous output, while classification is employed
... Show MoreFriction stir welding (FSW) of Tee-joints is obtained by inserting a specially designed rotating pin into the clamped blanks, through top plate (skin) to bottom plate (stringer), and then moving it along the joint, limiting the contact between the tool shoulder and the skin. The present work aims to investigate the defects occur for Tee-joint of an Aluminum alloy (Al 5456) with dimensions (180mm x 70mm) for the skin plate, (180mm x 30mm) for stringer plate and thickness of (4mm).
The effects of welding parameters such as rotational speed, linear speed, plunging depth, tool tilting, and die radii of welding fixture on the welding quality of Aluminum Alloy will be studied. Weld defects had been summarized and studied, and then the best
A substantial portion of today’s multimedia data exists in the form of unstructured text. However, the unstructured nature of text poses a significant task in meeting users’ information requirements. Text classification (TC) has been extensively employed in text mining to facilitate multimedia data processing. However, accurately categorizing texts becomes challenging due to the increasing presence of non-informative features within the corpus. Several reviews on TC, encompassing various feature selection (FS) approaches to eliminate non-informative features, have been previously published. However, these reviews do not adequately cover the recently explored approaches to TC problem-solving utilizing FS, such as optimization techniques.
... Show MoreIn the field of civil engineering, the adoption and use of Falling Weight Deflectometers (FWDs) is seen as a response to the ever changing and technology-driven world. Specifically, FWDs refer to devices that aid in evaluating the physical properties of a pavement. This paper has assessed the concepts of data processing, storage, and analysis via FWDs. The device has been found to play an important role in enabling the operators and field practitioners to understand vertical deflection responses upon subjecting pavements to impulse loads. In turn, the resultant data and its analysis outcomes lead to the backcalculation of the state of stiffness, with initial analyses of the deflection bowl occurring in conjunction with the measured or assum
... Show MoreIn this paper, the homotopy perturbation method (HPM) is presented for treating a linear system of second-kind mixed Volterra-Fredholm integral equations. The method is based on constructing the series whose summation is the solution of the considered system. Convergence of constructed series is discussed and its proof is given; also, the error estimation is obtained. Algorithm is suggested and applied on several examples and the results are computed by using MATLAB (R2015a). To show the accuracy of the results and the effectiveness of the method, the approximate solutions of some examples are compared with the exact solution by computing the absolute errors.
Background: Generally, genetic disorders are a leading cause of spontaneous abortion, neonatal death, increased morbidity and mortality in children and adults as well. They a significant health care and psychosocial burden for the patient, the family, the healthcare system and the community as a whole. Chromosomal abnormalities occur much more frequently than is generally appreciated. It is estimated that approximately 1 of 200 newborn infants had some form of chromosomal abnormality. The figure is much higher in fetuses that do not survive to term. It is estimated that in 50% of first trimester abortions, the fetus has a chromosomal abnormality. Aim of the study: This study aims to shed some light on the results of chromosomal studies per
... Show MoreThe current study was conductedas a pot experiment to determine the effect of soil texture on biological nitrogen fixation (BNF) of six most efficient local isolates, specified, of Bradyrhizobium. Cowpea (Vignaunguiculata L.), as a legume host crop, was used as a host crop and 15N dilution analysis was used for accurate determination of the amount of N biologically fixed under experimental parameters specified. Soils used are clay loam, sandy clay loam and sandy loam. Biological Nitrogen Fixation (BNF), in different soil textural classes, was as in the following order: medium texture soil > heavy texture soil > light textured soil. Statistical analysis showed that there is a significant variation in BNF % among six Iraqi isolates in the th
... Show More