Preferred Language
Articles
/
ERdMlY4BVTCNdQwCMFVu
Semi-parametric regression function estimation for environmental pollution with measurement error using artificial flower pollination algorithm
...Show More Authors

Artificial Intelligence Algorithms have been used in recent years in many scientific fields. We suggest employing flower pollination algorithm in the environmental field to find the best estimate of the semi-parametric regression function with measurement errors in the explanatory variables and the dependent variable, where measurement errors appear frequently in fields such as chemistry, biological sciences, medicine, and epidemiological studies, rather than an exact measurement. We estimate the regression function of the semi-parametric model by estimating the parametric model and estimating the non-parametric model, the parametric model is estimated by using an instrumental variables method (Wald method, Bartlett’s method, and Durbin’s method), The nonparametric model is estimated by using kernel smoothing (Nadaraya Watson), K-Nearest Neighbor smoothing and Median smoothing. The Flower Pollination algorithms were employed and structured in building the ecological model and estimating the semi-parametric regression function with measurement errors in the explanatory and dependent variables, then compare the models to choose the best model used in the environmental scope measurement errors, where the comparison between the models is done using the mean square error (MSE).

Publication Date
Fri Apr 01 2016
Journal Name
Journal Of Economics And Administrative Sciences
A Comparison Between Classic Local Least Estimatop And Bayesian Methoid For Estimating Semiparametric Logistic Regression Model
...Show More Authors

Semi-parametric models analysis is one of the most interesting subjects in recent studies due to give an efficient model estimation. The problem when the response variable has one of two values either 0 ( no response) or one – with response which is called the logistic regression model.

We compare two methods Bayesian and . Then the results were compared using MSe criteria.

A simulation had been used to study the empirical behavior for the Logistic model , with  different sample sizes and variances. The results using represent that the Bayesian method is better than the   at small samples sizes.

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Mar 04 2022
Journal Name
Environmental Science And Pollution Research
Geographically weighted regression model for physical, social, and economic factors affecting the COVID-19 pandemic spreading
...Show More Authors
Abstract<p>This study aims to analyze the spatial distribution of the epidemic spread and the role of the physical, social, and economic characteristics in this spreading. A geographically weighted regression (GWR) model was built within a GIS environment using infection data monitored by the Iraqi Ministry of Health records for 10 months from March to December 2020. The factors adopted in this model are the size of urban interaction areas and human gatherings, movement level and accessibility, and the volume of public services and facilities that attract people. The results show that it would be possible to deal with each administrative unit in proportion to its circumstances in light of the factors that appe</p> ... Show More
View Publication Preview PDF
Scopus (14)
Crossref (13)
Scopus Clarivate Crossref
Publication Date
Tue Apr 01 2025
Journal Name
Journal Of Engineering
Comparative Analysis of The Combined Model (Spatial and Temporal) and Regression Models for Predicting Murder Crime
...Show More Authors

This research dealt with the analysis of murder crime data in Iraq in its temporal and spatial dimensions, then it focused on building a new model with an algorithm that combines the characteristics associated with time and spatial series so that this model can predict more accurately than other models by comparing them with this model, which we called the Combined Regression model (CR), which consists of merging two models, the time series regression model with the spatial regression model, and making them one model that can analyze data in its temporal and spatial dimensions. Several models were used for comparison with the integrated model, namely Multiple Linear Regression (MLR), Decision Tree Regression (DTR), Random Forest Reg

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Sep 30 2017
Journal Name
Al-khwarizmi Engineering Journal
A Cognitive Hybrid Tuning Control Algorithm Design for Nonlinear Path-Tracking Controller for Wheeled Mobile Robot
...Show More Authors

Abstract

This research presents a on-line cognitive tuning control algorithm for the nonlinear controller of path-tracking for dynamic wheeled mobile robot to stabilize and follow a continuous reference path with minimum tracking pose error. The goal of the proposed structure of a hybrid (Bees-PSO) algorithm is to find and tune the values of the control gains of the nonlinear (neural and back-stepping method) controllers as a simple on-line with fast tuning techniques in order to obtain the best torques actions of the wheels for the cart mobile robot from the proposed two controllers. Simulation results (Matlab Package 2012a) show that the nonlinear neural controller with hybrid Bees-PSO cognitive algorithm is m

... Show More
View Publication Preview PDF
Publication Date
Thu Apr 01 2021
Journal Name
Biochemical And Cellular Archives
STUDY OF LYSYL OXIDASE-1 AND KIDNEY FUNCTION IN SERA OF IRAQI PATIENTS WITH DIABETIC NEPHROPATHY
...Show More Authors

This study aimed to compare lysyl oxidase-1 level in diabetic patients with and without renal dysfunction, that LOX-1 may be an indicator for the early stage of diabetic nephropathy (DN). In addition to finding it is a relationship with kidney functions in Iraqi diabetic patients with and without renal dysfunction. Blood was obtained from 25 healthy individuals as a control group (G1), 25 diabetic patients with renal dysfunction, and 25 diabetic patients without renal dysfunction. Age range 40-60 years for all subjects. BMI (25-27) Kg/m2 . The serum was used for the analysis of LOX-1, FBG, urea, creatinine and uric acid. Whole blood is used for the determination of HbA1C. Results of FBG and HbA1C revealed a significant increase in G2 and G

... Show More
Publication Date
Fri Jun 01 2012
Journal Name
J Med J
Relationship of seminal biochemical parameters and serum reproductive hormones with sperm function tests in asthenospermic patients
...Show More Authors

Aim: The aim of this study is to determine the correlation between levels of certain seminal biochemical parameters and serum reproductive hormones, on the one hand, and sperm function tests, on the other hand, in asthenospermic patients. Patients and Methods: Sixty asthenospermic patients and twenty fertile men as a control group were included in this study. Semen samples were collected to perform seminal fluid analysis. Total protein, cholesterol, calcium, creatine kinase, and fructose were measured in the seminal plasma. Blood samples were collected for hormonal assay of serum reproductive hormones: testosterone, prolactin, luteinizing hormone, and follicle-stimulating hormone. Results: The results revealed a significant positive correla

... Show More
Preview PDF
Scopus (4)
Scopus
Publication Date
Wed Jan 02 2019
Journal Name
Differential Equations And Dynamical Systems
Stability and Bifurcation in a Prey–Predator–Scavenger System with Michaelis–Menten Type of Harvesting Function
...Show More Authors

View Publication
Scopus (28)
Crossref (14)
Scopus Clarivate Crossref
Publication Date
Tue Mar 01 2016
Journal Name
International Journal Of Engineering Research And Advanced Technology (ijerat)
Speeding Up Back-Propagation Learning (SUBPL) Algorithm: A New Modified Back_Propagation Algorithm
...Show More Authors

The convergence speed is the most important feature of Back-Propagation (BP) algorithm. A lot of improvements were proposed to this algorithm since its presentation, in order to speed up the convergence phase. In this paper, a new modified BP algorithm called Speeding up Back-Propagation Learning (SUBPL) algorithm is proposed and compared to the standard BP. Different data sets were implemented and experimented to verify the improvement in SUBPL.

View Publication
Publication Date
Sat Mar 31 2018
Journal Name
Journal Of Engineering
Estimation of Minimum Miscibility Pressure for 〖CO〗_2 Flood Based on EOS
...Show More Authors

CO2 Gas is considered one of the unfavorable gases and it causes great air pollution. It’s possible to decrease this pollution by injecting  gas in the oil reservoirs to provide a good miscibility and to increase the oil recovery factor. MMP was estimated by Peng Robinson equation of state (PR-EOS). South Rumila-63 (SULIAY) is involved for which the miscible displacement by  is achievable based on the standard criteria for success EOR processes. A PVT report was available for the reservoir under study. It contains deferential liberation (DL) and constant composition expansion (CCE) tests.  PVTi software is one of the (Eclipse V.2010) software’s packages, it has been used to achieve the goal.  Many trials have been done to ma

... Show More
Crossref
Publication Date
Sun Mar 30 2025
Journal Name
Studia Universitatis Babeș-bolyai Chemia
GREEN SPECTROPHOTOMETRIC METHOD FOR CONCURRENT ESTIMATION OF PIROXICAM AND MEFENAMIC ACID MIXTURE
...Show More Authors

The purpose of this work is to concurrently estimate the UVvisible spectra of binary combinations of piroxicam and mefenamic acid using the chemometric approach. To create the model, spectral data from 73 samples (with wavelengths between 200 and 400 nm) were employed. A two-layer artificial neural network model was created, with two neurons in the output layer and fourteen neurons in the hidden layer. The model was trained to simulate the concentrations and spectra of piroxicam and mefenamic acid. For piroxicam and mefenamic acid, respectively, the Levenberg-Marquardt algorithm with feed-forward back-propagation learning produced root mean square errors of prediction of 0.1679 μg/mL and 0.1154 μg/mL, with coefficients of determination of

... Show More
View Publication
Scopus Clarivate Crossref