Preferred Language
Articles
/
ERdMlY4BVTCNdQwCMFVu
Semi-parametric regression function estimation for environmental pollution with measurement error using artificial flower pollination algorithm
...Show More Authors

Artificial Intelligence Algorithms have been used in recent years in many scientific fields. We suggest employing flower pollination algorithm in the environmental field to find the best estimate of the semi-parametric regression function with measurement errors in the explanatory variables and the dependent variable, where measurement errors appear frequently in fields such as chemistry, biological sciences, medicine, and epidemiological studies, rather than an exact measurement. We estimate the regression function of the semi-parametric model by estimating the parametric model and estimating the non-parametric model, the parametric model is estimated by using an instrumental variables method (Wald method, Bartlett’s method, and Durbin’s method), The nonparametric model is estimated by using kernel smoothing (Nadaraya Watson), K-Nearest Neighbor smoothing and Median smoothing. The Flower Pollination algorithms were employed and structured in building the ecological model and estimating the semi-parametric regression function with measurement errors in the explanatory and dependent variables, then compare the models to choose the best model used in the environmental scope measurement errors, where the comparison between the models is done using the mean square error (MSE).

Publication Date
Wed Apr 01 2009
Journal Name
Journal Of The Faculty Of Medicine Baghdad
Production of antibacterial agent from Streptomyces griseus by using Semi Solid Fermentation
...Show More Authors

Backround: The Solid state fermentation has several advantage including absence of free water , reduced volume of production media utilized for high products and the relatively low costs of production.
Methods: Thirty local isolates of soil obtained from Genetic Engneering and Biotechnology Institute. Nutrient agar was used to growth strains examination to antibacterial agent and Wheat bran and fish meal were used in combination (0-100%of each )and divided in 10 gm lost /flask . Each flask is inoculated with different numbers of Streptomyces spores and incubated for 5 days at 28°C, then the supernet was extracted and were assayed as antibacterial
Results: The ability of 30 local isolates of Streptomyc

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Dec 17 2022
Journal Name
Applied Sciences
A Hybrid Artificial Intelligence Model for Detecting Keratoconus
...Show More Authors

Machine learning models have recently provided great promise in diagnosis of several ophthalmic disorders, including keratoconus (KCN). Keratoconus, a noninflammatory ectatic corneal disorder characterized by progressive cornea thinning, is challenging to detect as signs may be subtle. Several machine learning models have been proposed to detect KCN, however most of the models are supervised and thus require large well-annotated data. This paper proposes a new unsupervised model to detect KCN, based on adapted flower pollination algorithm (FPA) and the k-means algorithm. We will evaluate the proposed models using corneal data collected from 5430 eyes at different stages of KCN severity (1520 healthy, 331 KCN1, 1319 KCN2, 1699 KCN3 a

... Show More
View Publication
Scopus (1)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Tue Nov 30 2021
Journal Name
Iraqi Journal Of Science
Temporal Video Segmentation Using Optical Flow Estimation
...Show More Authors

Shot boundary detection is the process of segmenting a video into basic units known as shots by discovering transition frames between shots. Researches have been conducted to accurately detect the shot boundaries. However, the acceleration of the shot detection process with higher accuracy needs improvement. A new method was introduced in this paper to find out the boundaries of abrupt shots in the video with high accuracy and lower computational cost. The proposed method consists of two stages. First, projection features were used to distinguish non boundary transitions and candidate transitions that may contain abrupt boundary. Only candidate transitions were conserved for next stage. Thus, the speed of shot detection was improved by r

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Sat Dec 01 2018
Journal Name
Ain Shams Engineering Journal
A semi-analytical iterative method for solving differential algebraic equations
...Show More Authors

View Publication
Crossref (6)
Crossref
Publication Date
Mon Oct 30 2023
Journal Name
Iraqi Journal Of Science
SMS Spam Detection Using Multiple Linear Regression and Extreme Learning Machines
...Show More Authors

     With the growth of the use mobile phones, people have become increasingly interested in using Short Message Services (SMS) as the most suitable communications service. The popularity of SMS has also given rise to SMS spam, which refers to any unwanted message sent to a mobile phone as a text. Spam may cause many problems, such as traffic bottlenecks or stealing important users' information. This paper,  presents a new model that extracts seven features from each message before applying a Multiple Linear Regression (MLR) to assign a weight to each of the extracted features. The message features are fed into the Extreme Learning Machine (ELM) to determine whether they are spam or ham. To evaluate the proposed model, the UCI bench

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Fri Dec 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
Multi – Linear in Multiple Nonparametric Regression , Detection and Treatment Using Simulation
...Show More Authors

             It is the regression analysis is the foundation stone of knowledge of statistics , which mostly depends on the ordinary least square method , but as is well known that the way the above mentioned her several conditions to operate accurately and the results can be unreliable , add to that the lack of certain conditions make it impossible to complete the work and analysis method and among those conditions are the multi-co linearity problem , and we are in the process of detected that problem between the independent variables using farrar –glauber test , in addition to the requirement linearity data and the lack of the condition last has been resorting to the

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue May 30 2023
Journal Name
Iraqi Journal Of Science
Crude Oil Price Forecasts Using Support Vector Regression and Technical Indicators
...Show More Authors

Oil price forecasting has captured the attention of both researchers and academics because of the unique characteristics of crude oil prices and how they have a big impact on a lot of different parts of the economic value of the product. As a result, most academics use a lot of different ways to predict the future. On the other hand, researchers have a hard time because crude oil prices are very unpredictable and can be affected by many different things. This study uses support vector regression (SVR) with technical indicators as a feature to improve the prediction of the monthly West Texas Intermediate (WTI) price of crude oil. The root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE) measur

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Mon Jun 05 2023
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Poisson Regression and Conway Maxwell Poisson Models Using Simulation
...Show More Authors

Regression models are one of the most important models used in modern studies, especially research and health studies because of the important results they achieve. Two regression models were used: Poisson Regression Model and Conway-Max Well-  Poisson), where this study aimed to make a comparison between the two models and choose the best one between them using the simulation method and at different sample sizes (n = 25,50,100) and with repetitions (r = 1000). The Matlab program was adopted.) to conduct a simulation experiment, where the results showed the superiority of the Poisson model through the mean square error criterion (MSE) and also through the Akaiki criterion (AIC) for the same distribution.

Paper type:

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Periodicals Of Engineering And Natural Sciences
Solving multicollinearity problem of gross domestic product using ridge regression method
...Show More Authors

This study is dedicated to solving multicollinearity problem for the general linear model by using Ridge regression method. The basic formulation of this method and suggested forms for Ridge parameter is applied to the Gross Domestic Product data in Iraq. This data has normal distribution. The best linear regression model is obtained after solving multicollinearity problem with the suggesting of 10 k value.

Scopus (4)
Scopus
Publication Date
Mon Jan 01 2024
Journal Name
Journal Of The Faculty Of Medicine Baghdad
Evaluation of Brain Stem Function in Diabetics with and Without Distal Symmetrical Polyneuropathy Using the Blink Reflex
...Show More Authors

 Background: Diabetic peripheral neuropathy (DPN) is the commonest complication of T2DM. Neuropathy is a descriptor for a spectrum of clinical and subclinical symptoms with varying anatomical distributions, clinical histories, and perhaps underlying pathogenetic mechanisms. The distal Symmetrical sensory polyneuropathy is chronic, symmetrical, length-dependent sensorimotor. Studies of the blink reflex have shown potential as a method of assessing brainstem activity.

Objective: The primary purpose of this research was to assess the function of the blink reflex in the early detection of cranial nerves and brain

... Show More
View Publication
Crossref