Artificial Intelligence Algorithms have been used in recent years in many scientific fields. We suggest employing flower pollination algorithm in the environmental field to find the best estimate of the semi-parametric regression function with measurement errors in the explanatory variables and the dependent variable, where measurement errors appear frequently in fields such as chemistry, biological sciences, medicine, and epidemiological studies, rather than an exact measurement. We estimate the regression function of the semi-parametric model by estimating the parametric model and estimating the non-parametric model, the parametric model is estimated by using an instrumental variables method (Wald method, Bartlett’s method, and Durbin’s method), The nonparametric model is estimated by using kernel smoothing (Nadaraya Watson), K-Nearest Neighbor smoothing and Median smoothing. The Flower Pollination algorithms were employed and structured in building the ecological model and estimating the semi-parametric regression function with measurement errors in the explanatory and dependent variables, then compare the models to choose the best model used in the environmental scope measurement errors, where the comparison between the models is done using the mean square error (MSE).
In this study, we focused on the random coefficient estimation of the general regression and Swamy models of panel data. By using this type of data, the data give a better chance of obtaining a better method and better indicators. Entropy's methods have been used to estimate random coefficients for the general regression and Swamy of the panel data which were presented in two ways: the first represents the maximum dual Entropy and the second is general maximum Entropy in which a comparison between them have been done by using simulation to choose the optimal methods.
The results have been compared by using mean squares error and mean absolute percentage error to different cases in term of correlation valu
... Show MoreA non-parametric kernel method with Bootstrap technology was used to estimate the confidence intervals of the system failure function of the log-normal distribution trace data. These are the times of failure of the machines of the spinning department of the weaving company in Wasit Governorate. Estimating the failure function in a parametric way represented by the method of the maximum likelihood estimator (MLE). The comparison between the parametric and non-parametric methods was done by using the average of Squares Error (MES) criterion. It has been noted the efficiency of the nonparametric methods based on Bootstrap compared to the parametric method. It was also noted that the curve estimation is more realistic and appropriate for the re
... Show MoreIn this paper, we derived an estimator of reliability function for Laplace distribution with two parameters using Bayes method with square error loss function, Jeffery’s formula and conditional probability random variable of observation. The main objective of this study is to find the efficiency of the derived Bayesian estimator compared to the maximum likelihood of this function and moment method using simulation technique by Monte Carlo method under different Laplace distribution parameters and sample sizes. The consequences have shown that Bayes estimator has been more efficient than the maximum likelihood estimator and moment estimator in all samples sizes
In this paper, the maximum likelihood estimates for parameter ( ) of two parameter's Weibull are studied, as well as white estimators and (Bain & Antle) estimators, also Bayes estimator for scale parameter ( ), the simulation procedures are used to find the estimators and comparing between them using MSE. Also the application is done on the data for 20 patients suffering from a headache disease.
أن الطرق اللامعلمية هي نوع من الطرق الاحصائية الاستدلالية التي يمكن استخدامها للتوصل إلى أستنتاجات لذا كان حرص المؤلف على أصدار هذا الكتاب والذي يعمل على توضيح ( لماذا ؟ ومتى ؟ وكيف ؟ ) تستخدم كل طريقة إحصائية . وبإمكان القاريء سواء أكان أستاذا ً جامعيا ً أو باحثا ً أو طالبا ً في الدراسات العليا ( الماجستير والدكتوراه ) أو طالبا ً في الدراسات الأولية أن يتتبع جميع الخطوات لحساب كل قانون إحصائي وبدءا ً من عملية إدخ
... Show MoreThe main purpose of this work is the construction of an optical parametric amplifier (OPA) to generate a 629 nm pulsed laser. KTP nonlinear crystals were used for both parametric oscillation and amplification. A singly resonant parametric oscillator (OPO) is constructed to generate a signal of 1.54 μm and idler of 3.4 μm when the OPO system is pumped by 1.064 μm Q – switched Nd: YAG laser. The signal was then mixed with the pumping beam in OPA system to form the wanted wavelength. The obtained optical conversion efficiency was 60%.
Variable selection is an essential and necessary task in the statistical modeling field. Several studies have triedto develop and standardize the process of variable selection, but it isdifficultto do so. The first question a researcher needs to ask himself/herself what are the most significant variables that should be used to describe a given dataset’s response. In thispaper, a new method for variable selection using Gibbs sampler techniqueshas beendeveloped.First, the model is defined, and the posterior distributions for all the parameters are derived.The new variable selection methodis tested usingfour simulation datasets. The new approachiscompared with some existingtechniques: Ordinary Least Squared (OLS), Least Absolute Shrinkage
... Show More