Abstract The concept of quantum transition is based on the completion of a succession of time dependent (TD) perturbation theories in Quantum mechanics (QM). The kinetics of "quantum" transition, which are dictated by the coupled motions of a lightweight electrons and very massive nuclei, are inherent by nature in chemical and molecular physics, and the sequence of TD perturbation theory become unique. The first way involved adding an additional assumption into molecule quantum theory in the shape of the Franck-Condon rule, which use the isothermal approach. The author developed the second strategy, which involved injecting chaos to dampen the unique dynamically of the bonding movement of electrons and nuclei in the intermediary state of molecules "quantum" transition. Dozy pandemonium is a type of chaos that occurs solely during molecular quantum events. Technically, damping is accomplished by substituting a finite quantity for an endlessly small imagined additive in the spectrum form of the state's full Green's functional. In the molecule transient stage, damping chaos leads to energy spectrum consistency, which is an indication of classical physics. However, in the adiabatic approach, the molecule's starting and end states follow quantum physics. Quantum-classical mechanics is a branch of molecule quantum theory that considers dynamics of the transitory molecular states of "quantum" transition. Dozy chaos technicians of primary education electron carriers in crystalline materials, which is the easiest case of DC (dozy-chaos) mechanical systems, and its implementations to a broad variety of cases, including the absorption spectrum in dyes of polymethine and their collection, have previously demonstrated the effectiveness of the dampers for the above said beginning of the universe. This study explains the elementary electron DC mechanics exchanges in a systematic way. The key results of its implementations are also discussed, as they were in the introductory.
High smoke emissions, nitrogen oxide and particulate matter typically produced by diesel engines. Diminishing the exhausted emissions without doing any significant changes in their mechanical configuration is a challenging subject. Thus, adding hydrogen to the traditional fuel would be the best practical choice to ameliorate diesel engines performance and reduce emissions. The air hydrogen mixer is an essential part of converting the diesel engine to work under dual fuel mode (hydrogen-diesel) without any engine modification. In this study, the Air-hydrogen mixer is developed to get a homogenous mixture for hydrogen with air and a stoichiometric air-fuel ratio according to the speed of the engine. The mixer depends on the balance between th
... Show MoreIn this paper, third order non-polynomial spline function is used to solve 2nd kind Volterra integral equations. Numerical examples are presented to illustrate the applications of this method, and to compare the computed results with other known methods.
Experimental investigation for small horizontal portable wind turbine (SHPWT) of NACA-44, BP-44, and NACA-63, BP-63 profiles under laboratory conditions at different wind velocity range of (3.7-5.8 m/s) achieved in present work. Experimental data tabulated for 2, 3, 4, and 6- bladed rotor of both profiles within range of blade pitch angles . A mathematical model formulated and computer Code for MATLAB software developed. The least-squares regression is used to fit experimental data. As the majority of previous works have been presented for large scale wind turbines, the aims were to present the performance of (SHPWT) and also to make a comparisons between both profiles to conclude which is the best performance. The overall efficiency and el
... Show MoreThis paper deals with two preys and stage-structured predator model with anti-predator behavior. Sufficient conditions that ensure the appearance of local and Hopf bifurcation of the system have been achieved, and it’s observed that near the free predator, the free second prey and the free first prey equilibrium points there are transcritical or pitchfork and no saddle node. While near the coexistence equilibrium point there is transcritical, pitchfork and saddle node bifurcation. For the Hopf bifurcation near the coexistence equilibrium point have been studied. Further, numerical analysis has been used to validate the main results.
Nonsteroidal anti-inflammatory drugs (NSAIDs) are drugs that help reduce inflammation, which often helps to relieve pain. In this research new ibuprofen oxothiazolidnone derivatives were synthesized from the reaction of Schiff base derivatives of Ibuprofen with mercapto acetic acid VI a-c, to improve the potency and to decrease the drug's potential side effects, a new series of 4-thiazolidinone derivatives of ibuprofen was synthesized VI a-c . The characterizations of the compounds were identified by using FTIR, 1HNMR technique and by measuring the physical properties.
In the present study, the effectiveness of a procedure of electrocoagulation for removing chemical oxygen demand (COD) from the wastewater of petroleum refinery has been evaluated. Aluminum and stainless steel electrodes were used as a sacrificial anode and cathode respectively. The effect of current density (4-20mAcm−2), pH (3-11), and NaCl concentration (0-4g/l) on efficiency of removal of chemical oxygen demand was investigated. The results have shown that increasing of current density led to increase the efficiency of COD removal while increasing NaCl concentration resulted in decreasing of COD removal efficiency. Effect of pH was found to be lowering COD re
Catalytic reduction is considered an effective approach for the reduction of toxic organic pollutants from the environment, but finding an active catalyst is still a big challenge. Herein, Ag decorated CeO2 catalyst was synthesized through polyol reduction method and applied for catalytic reduction (conversion) of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). The Ag decorated CeO2 catalyst displayed an outstanding reduction activity with 99% conversion of 4-NP in 5 min with a 0.61 min−1 reaction rate (k). A number of structural characterization techniques were executed to investigate the influence of Ag on CeO2 and its effect on the catalytic conversion of 4-NP. The outstanding catalytic performances of the Ag-CeO2 catalyst can be assigne
... Show More