Groundwater is an important resource that can be used for various purposes. Various factors can change the chemistry of the GW, such as the chemical composition of an aquifer as well as the leaching of human waste into groundwater. The study area is a barren land covered by some sabkhas, in addition to some agricultural fields. The study aims to assess groundwater quality for drinking purposes using the Water Quality Index. The groundwater is chemically heterogeneous and has a wide quality range from very poor to excellent. Evaporation appears to be the controlling factor among the other shallow waters, while relatively deep water is related to rock-soil dominance. Rocks, land use and land cover have helped control the groundwater quality. Moreover, the heavy use of fertilizers, pesticides and irrigation, in addition to the presence of sabkhas, contributed to the deterioration of the groundwater quality. The water-rock interaction and evaporation are the dominant mechanisms that are controlling the groundwater quality in the study area.
Aromatic Schiff-bases are known to have antibacterial activity, but most of these compounds are sparingly soluble in water. The present work describes the synthesis of new Schiff-bases derived from branched aminosugars. Treatment of 3-Amino-3-Cyano-3-Deoxy-1,2:5,6-Di-O-Isopropylene-α-D-Allofuranose (1) with the aldehydes (2) under reflux in methanol afforded the Schiff-bases (3) in good yields. The new Schiff-bases were in accord with their NMR, IR spectral data and elemental analysis.
The widespread use of the Internet of things (IoT) in different aspects of an individual’s life like banking, wireless intelligent devices and smartphones has led to new security and performance challenges under restricted resources. The Elliptic Curve Digital Signature Algorithm (ECDSA) is the most suitable choice for the environments due to the smaller size of the encryption key and changeable security related parameters. However, major performance metrics such as area, power, latency and throughput are still customisable and based on the design requirements of the device.
The present paper puts forward an enhancement for the throughput performance metric by p
... Show MoreThis work involved the co-substitution of the two bioactive ions of strontium and magnesium into the hydroxyapatite (HA) coating which was then electrochemically deposited on Ti-6Al-4V ELI dental alloy (Gr.23) before and after treatment by Micro Arc Oxidation (MAO). The deposited layers were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The adhesion strength of the coating layer was estimated by using pull-off adhesion test. The adhesion strength of Sr/Mg-HA on the Ti-6Al-4V ELI dental alloy after MAO treatment was 1.79 MPa, which was higher than that before MAO treatment (1.62 MPa). The corrosion behavior of th
... Show MoreMethicillin resistant Staphylococcus aureus (MRSA) is one of the principal nosocomial causative agents. This bacterium has the capability to resist wide range of antibiotics and it is responsible for many diseases like skin, nose and wounds infection. In this study, randomly amplified polymorphic DNA (RAPD)-PCR was applied with ten random primers to examine the molecular diversity among methicillin resistant Staphylococcus aureus (MRSA) isolates in the hospitals and to investigate the genetic distance between them. 90 Isolates were collected from clinical specimens from Iraqi hospitals for a total of 90 isolates. Only 10 strains (11.11%) were found to be MRSA. From these 10 primers, only 9 gave clear amplification products. 91 fragment l
... Show MoreThe ability of beans (Phaseolus vulgaris L.) to uptake three pharmaceuticals (diclofenac, mefenamic acid and metronidazole) from two types of soil (clay and sandy soil) was investigated in this study to explore the human exposure to these pharmaceuticals via the consumption of beans. A pot experiment was conducted with beans plants which were grown in two types of soil for six weeks under controlled conditions. During the experiment period, the soil pore water was collected weekly and the concentrations of the test compounds in soil pore water as well as in plant organs (roots, stems and leaves) were weekly determined.
The results showed that the studied pharmaceuticals were detected in all plant tissues; their concentration
This study depicts the removal of Manganese ions (Mn2+) from simulated wastewater by combined electrocoagulation/ electroflotation technologies. The effects of initial Mn concentration, current density (C.D.), electrolysis time, and different mesh numbers of stainless steel screen electrodes were investigated in a batch cell by adopting Taguchi experimental design to explore the optimum conditions for maximum removal efficiency of Mn. The results of multiple regression and signal to noise ratio (S/N) showed that the optimum conditions were Mn initial concentration of 100 ppm, C.D. of 4 mA/cm2, time of 120 min, and mesh no. of 30 (wire/inch). Also, the relative significance of each factor was attained by the analysis
... Show MoreThis study depicts the removal of Manganese ions (Mn2+) from simulated wastewater by combined electrocoagulation/ electroflotation technologies. The effects of initial Mn concentration, current density (C.D.), electrolysis time, and different mesh numbers of stainless steel screen electrodes were investigated in a batch cell by adopting Taguchi experimental design to explore the optimum conditions for maximum removal efficiency of Mn. The results of multiple regression and signal to noise ratio (S/N) showed that the optimum conditions were Mn initial concentration of 100 ppm, C.D. of 4 mA/cm2, time of 120 min, and mesh no. of 30 (wire/inch). Also, the relative significance of each factor was attained by the analysis of variance (ANO
... Show MoreThe gas sensing properties of Co3O4and Co3O4:Y nano structures were investigated. The films were synthesized using the hydrothermal method on a seeded layer. The XRD, SEM analysis and gas sensing properties were investigated for Co3O4and Co3O4:Y thin films. XRD analysis shows that all films are polycrystalline in nature, having a cubic structure, and the crystallite size is (11.7)nm for cobalt oxide and (9.3)nm for the Co3O4:10%Y. The SEM analysis of thin films obviously indicates that Co3O4possesses a nanosphere-like structure and a flower-like structure for Co3O4:Y.The sensitivity, response time and recovery time to a H2S reducing gas were tested at different operating
... Show More